
R

S

W
a

b

c

I
d

e

f

a

A
R
R
A

K
S
P
S
R

C

d

0
d

Computers and Electronics in Agriculture 74 (2010) 2–33

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journa l homepage: www.e lsev ier .com/ locate /compag

eview

ensing technologies for precision specialty crop production

.S. Leea,∗, V. Alchanatisb,1, C. Yangc,2, M. Hirafujid,3, D. Moshoue,4, C. Li f,5

University of Florida, Agricultural & Biological Engineering Department, P.O. Box 110570, Frazier Rogers Hall, Museum Road, Gainesville, FL 32611-0570, United States
Department of Sensing, Information and Mechanization Engineering, Institute of Agricultural Engineering, ARO – The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Kika de la Garza Subtropical Agricultural Research Center,

ntegrated Farming and Natural Resources Research Unit, 2413 E. Highway 83, Weslaco, TX 78596, United States
National Agriculture and Food Research Organization, National Agricultural Research Center and University of Tsukuba, 3-1-1 Kannondai Tsukuba, Ibaraki 305-8666, Japan
Aristotle University of Thessaloniki (A.U.Th.), Agricultural Engineering Laboratory, Faculty of Agriculture, P.O. 275, Egnatias street 124, 54124, Thessaloniki, Greece
Biological & Agricultural Engineering, University of Georgia, 2329 Rainwater Road, Tifton, GA 31793, United States

r t i c l e i n f o

rticle history:
eceived 11 March 2009
eceived in revised form 30 July 2010
ccepted 7 August 2010

eywords:
pecialty crop
recision agriculture
ensing

a b s t r a c t

With the advances in electronic and information technologies, various sensing systems have been
developed for specialty crop production around the world. Accurate information concerning the spatial
variability within fields is very important for precision farming of specialty crops. However, this variabil-
ity is affected by a variety of factors, including crop yield, soil properties and nutrients, crop nutrients,
crop canopy volume and biomass, water content, and pest conditions (disease, weeds, and insects). These
factors can be measured using diverse types of sensors and instruments such as field-based electronic sen-
sors, spectroradiometers, machine vision, airborne multispectral and hyperspectral remote sensing, satel-
lite imagery, thermal imaging, RFID, and machine olfaction system, among others. Sensing techniques for
crop biomass detection, weed detection, soil properties and nutrients are most advanced and can provide
eview
the data required for site specific management. On the other hand, sensing techniques for diseases detec-
tion and characterization, as well as crop water status, are based on more complex interaction between
plant and sensor, making them more difficult to implement in the field scale and more complex to inter-
pret. This paper presents a review of these sensing technologies and discusses how they are used for pre-
cision agriculture and crop management, especially for specialty crops. Some of the challenges and con-

siderations on the use of these sensors and technologies for specialty crop production are also discussed.

© 2010 Elsevier B.V. All rights reserved.
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. Introduction

Specialty crops are facing increasing market pressures that
hreaten their long-term viability. In the U. S., high labor costs,
ncertain labor pools, limited access to international markets,
nd increased competition could eliminate numerous specialty
rop industries within the next 10 years (Burks et al., 2008). This
ituation can become a serious threat to the survival of rural com-
unities and to food security.
The majority of specialty crop production enterprises rely on

ow-wage, seasonal and usually unskilled labor. Socio-economic
esearch has shown that automation in many industrial sectors
reates more job opportunities than it eliminates but in different
rofessions. This results from the reduction of the availability of

ob vacancies for lower-skilled, and potentially unsafe production
asks, while creating opportunities for higher skilled and more spe-
ialized workers in jobs related to manufacturing, support, service,
nd finance — and industries that create innovative products or
olutions, which in many cases leads to a more competitive market

osition.

The introduction of automation in crop production industries
oncerns tools and technologies that can improve efficiency and
roduct quality and also reduce the environmental impact which

s an unwanted side-effect of processing (http://www.csrees.usda.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

gov/nea/ag systems/pdfs/specialty crops engineering.pdf). Even-
tually, these technologies need the extensive use of sensors to be
able to perform these tasks. These sensor-intensive technologies
include:

(1) Novel technologies for controlling the applications of chemicals
and nutrients in a way that improves efficiency, reduces cost,
improves worker safety, and reduces the impact on the envi-
ronment. These technologies require extensive use of sensors.

(2) Operations enhanced by the use of non-contact sensors
in mechatronic and robotic solutions, to increase pro-
ductivity and subsequently minimize labor cost. Examples
include fruit thinning, pruning, spraying, and harvesting as
appropriate.

(3) Autonomous navigation systems that can be applied to differ-
ent agricultural operations like harvesting, spraying and utility
vehicles. These operations need a number of crop sensors in
order to function in a fashion that is sensitive to local crop
conditions.
(4) Precision agriculture involves sensor technologies for yield
mapping and prediction, soil sensing, nutrient and pesticide
application, irrigation control, etc. Precision agriculture makes
extensive use of sensors in order to identify proper targets and
needs of crops for applying locally varying doses of chemicals.

http://www.csrees.usda.gov/nea/ag_systems/pdfs/specialty_crops_engineering.pdf
http://www.csrees.usda.gov/nea/ag_systems/pdfs/specialty_crops_engineering.pdf


4 ctroni

(

c
R
m
p
a
a
a
s
r
d
f

v
p
n
p
p
a
w
T
t
v
s
p
h
e
e
c

2

2

t
e
p
A
o
i
a
a
o
l
s
i
o
a
i
n

o
f
s
s
u
a
p
b

W.S. Lee et al. / Computers and Ele

5) The monitoring of diseases and pests and scouting is based on
various approaches including a number of sensor technologies
like space-based or airborne remote sensing, and ground-based
systems using proximal non contact sensing.

Recent and ongoing sensor developments allow growers to
losely monitor and control many aspects of crop production.
emote and local sensors or sensor networks can be applied to
onitor plant nutrient and moisture needs, soil conditions, and

lant health (including insect and disease detection). Precision
griculture is based on such information intensive sources and
ttempts to address the site-specific needs with spatially variable
pplication. To establish a reliable and wide foundation for preci-
ion agriculture, there is a desperate need for data with high spatial
esolution, wide thematic range and high thematic resolution. The
escribed sensors have been developed exactly for this purpose: to
ulfill that need for data.

With the advances of electronic and information technologies,
arious sensing systems have been developed for specialty crop
roduction around the world. This paper reviews the sensing tech-
ologies that have been developed and used for implementing
recision farming for specialty crops. The information needed for
recision crop management includes crop yield, soil properties
nd nutrients, crop nutrients, crop canopy volume and biomass,
ater content, and pest conditions (disease, weeds, and insects).

he methods and technologies used for detecting crop informa-
ion include field electronic sensors, spectroradiometers, machine
ision, airborne multispectral and hyperspectral remote sensing,
atellite imagery, and thermal imaging, among others. This paper
resents these sensing technologies in seven sections and discusses
ow they are used for precision agriculture and crop management,
specially for specialty crops. Some of the challenges and consid-
rations on the use of these sensors and technologies for specialty
rop production are also discussed.

. Specialty crop yield mapping

.1. High resolution remote sensing imagery

Crop yield is perhaps the most important piece of informa-
ion for crop management in precision agriculture. It integrates the
ffects of various spatial variables such as soil properties, topogra-
hy, plant population, fertilization, irrigation, and pest infestations.
yield map can therefore be an indispensable input for site-specific
perations either by itself or in combination with other spatial
nformation (Searcy et al., 1989). Despite the commercial avail-
bility and increased use of yield monitors, most of the harvesters
re not equipped with them. Moreover, yield monitor data can
nly be used for after-season management, whereas some prob-
ems such as nutrient deficiencies, water stress, or pest infestations
hould be managed during the growing season. Remote sensing
magery obtained during the growing season has the potential not
nly for after-season management, but also for within-season man-
gement. Additionally, yield maps derived from remote sensing
magery can be used as an alternative when yield monitor data are
ot available.

Traditional satellite imagery has been used for yield estimation
ver large geographic areas, but this type of imagery has limited use
or assessing the variation in yield within fields because of its coarse
patial resolution. Therefore, airborne multispectral and hyper-

pectral imagery and high resolution satellite imagery have been
sed for mapping within-field yield variability and other precision
griculture applications. Airborne multispectral imaging systems
rovide image data at fine spatial resolutions and at narrow spectral
ands and have the real-time monitoring capability. Airborne mul-
cs in Agriculture 74 (2010) 2–33

tispectral imagery has been related to crop yields based on samples
collected on field plots or in various sampling patterns (Richardson
et al., 1990; Yang and Anderson, 1999; Shanahan et al., 2001; Leon
et al., 2003; Inman et al., 2008). With the increased use of harvester-
mounted yield monitors, intensive yield data can be collected from
a field. The availability of both yield monitor data and remote sens-
ing imagery allows the relations between yield and spectral image
data to be evaluated more robustly and thoroughly than the use
of limited numbers of yield samples. Many researchers have eval-
uated the relationships between yield monitor data and airborne
multispectral imagery (Senay et al., 1998; GopalaPillai and Tian,
1999; Yang et al., 2000; Yang and Everitt, 2002; Dobermann and
Ping, 2004).

Hyperspectral imagery contains tens to hundreds of narrow
bands and provides additional information that multispectral data
may have missed. These almost continuous spectral data have the
potential for better differentiation and estimation of biophysical
attributes for some applications. Airborne hyperspectral imagery
has been evaluated for estimating crop yields (Goel et al., 2003;
Yang et al., 2004a,b; Zarco-Tejada et al., 2005; Yang et al., 2007). The
commercial availability of high resolution satellite sensors such as
IKONOS, QuickBird, and SPOT 5 has opened up new opportunities
for mapping within-field variability. These satellite sensors have
significantly narrowed the gap in spatial resolution between satel-
lite and airborne imagery. IKONOS and QuickBird imagery has been
evaluated for assessing crop yields (Chang et al., 2003; Dobermann
and Ping, 2004; Yang et al., 2006a,b).

Vegetation indices (VIs) derived from the spectral bands in mul-
tispectral imagery have long been used to estimate crop yields
(Tucker et al., 1980; Wiegand et al., 1991; Plant et al., 2000; Yang
and Everitt, 2002). These VIs are usually formed from combina-
tions of visible and near-infrared (NIR) wavebands. Two of the
earliest and most widely used VIs are the simple NIR/Red ratio
(Jordan, 1969) and the normalized difference vegetation index
(NDVI) (Rouse et al., 1973). Another commonly used index is the
soil-adjusted vegetation index (SAVI) (Huete, 1988). Many other VIs
including band ratios such as NIR/Green and normalized differences
such as the green NDVI have also been used for yield estimation
(Yang et al., 2000, 2006a; Dobermann and Ping, 2004). In addition
to VIs, yield has been directly related to all individual bands in mul-
tispectral imagery and to the principal components derived from
the imagery using regression analysis to determine the amount of
variability explained by the imagery (Chang et al., 2003).

In principle, all the VIs that have been developed based on
multispectral data can be applied to hyperspectral data. However,
multispectral data only have a few bands to use for calculating
VIs, while hyperspectral data contain tens to hundreds of bands
to choose from. Thus the number of VIs that can be derived from
a hyperspectral image can be overwhelmingly large. Yang et al.
(2004a) applied stepwise regression analysis on grain sorghum
yield monitor data and 102-band airborne hyperspectral imagery
to identify optimum band combinations for mapping yield vari-
ability. They also used principle components analysis and stepwise
regression to select the significant principle components to account
for the yield variability. To demonstrate the advantage of narrow
hyperspectral bands over broad multispectral bands for yield esti-
mation, Yang et al. (2004b) aggregated hyperspectral bands into
Landsat-7 ETM+ sensor’s four broad visible and NIR bands and
found that the combinations of significant narrow bands explained
more yield variability than the four broad bands. Zarco-Tejada
et al. (2005) calculated a number of VIs using selected narrow

bands from airborne hyperspectral imagery to estimate cotton
yield. Yang et al. (2007) applied linear spectral unmixing techniques
to 102-band hyperspectral images to derive plant cover fractions
for mapping the variation in crop yield. The plant fraction images
provided better r-values with yield than most of the 5151 possi-
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le narrow-band NDVIs derived from the 102-band hyperspectral
mages.

Remote sensing has been used for yield estimation for various
nnual crops, but only limited research has been conducted on
ield estimation for specialty crops such as fruit trees and vegeta-
les. Koller and Upadhyaya (2005a,b) examined the relationships
etween leaf area index (LAI) and a modified NDVI for process-

ng tomatoes and used the LAI derived from aerial images and
hotosynthetically active radiation (PAR) to predict tomato yield.
heir results showed that although the actual and predicted yield
aps did not have a very high correlation, the two maps had sim-

lar yield patterns. Ye et al. (2007) used partial least squares (PLS)
egression models to predict the yields of citrus trees from their
anopy features obtained from airborne hyperspectral imagery as
ompared with vegetation indices and multiple linear regression
odels. Their results showed that vegetation indices and multi-

pectral regression models failed to predict citrus yield, but PLS
odels successfully predicted citrus yield with R-squared values

f 0.51 to 0.90. Ye et al. (2008) also examined the relationships
etween particular canopy features obtained from airborne multi-
pectral images and the fruit yields of citrus trees and they found
hat mature leaves in canopies were more significantly correlated
ith fruit yield for the current growing season, while younger

eaves were more significantly correlated with fruit yield for the
ollowing growing season. Yang et al. (2008) evaluate CIR aerial
hotography and field reflectance spectra for estimating cabbage
hysical parameters and their results show that both aerial photog-
aphy and reflectance spectra can be used to extract cabbage plant
rowth and yield information.

It should be noted that the statistical models relating yield to
pectral bands or vegetation indices are generally developed based
n the data collected from specific fields at specific times of the
rowing season. These models may be valid for yield estimation for
elds with similar growing conditions (i.e., crop variety, growing
tages, fertilization, irrigation, and pest management). Obviously,
f one or more growing conditions are significantly different, the

odels will not perform as well or even give erroneous results.
urrently, commercial yield monitors are available for major crops
uch as grain and cotton, but there are not many commercial
ield monitors for most specialty crops except a few crops (cit-
us, pistachio, and tomato) being in commercial or developmental
tages. Airborne imagery in conjunction with ground sampling
nd statistical analysis can provide an alternative for yield map-
ing. Imagery acquired on different growth stages of a crop will
rovide some clues as to the optimal time periods for image acqui-
ition for yield estimation. While accurate estimates of yield are
ot always possible during the season, yield patterns and within-
eld management zones identified from airborne multispectral and
yperspectral imagery can be very useful for both within-season
nd after-season management. Much research on remote sensing
or yield estimation is needed to adapt the existing methods and
evelop new methods for specialty crops. Spectral measurements
rom crop canopy made at certain growing stages of the growing
eason can be used for yield estimation, but many other factors
ncluding weather, image availability and lack of user-friendly and
eliable models present some of the challenges for the widespread
se of remote sensing for yield estimation. Research has shown
hat hyperspectral imagery has some advantage over multispectral
magery for this application. However, more research is needed to
ompare different types of remote sensing imagery for their effec-
iveness, cost, and practicality.
.2. Machine vision

Machine vision is based on digital images and tries to mimic
uman perception to provide information or input to systems
ics in Agriculture 74 (2010) 2–33 5

that need it for application of site specific crop production. The
most common application of machine vision is based on silicon
sensors (CCD or CMOS arrays) that are sensitive to the range of
400–1000 nm. Within this group, color machine vision is most
common, because of its low price and multitude of information
contained in the color images. Color machine vision includes three
wide spectral channels (approximately 150 nm FWHM), centered
at the three basic colors, red (∼600 nm), green (∼550 nm) and blue
(∼450 nm). Nevertheless, multispectral cameras employing spe-
cific bands have been used to enhance segmentation (Zandonadi et
al., 2005). The main areas that color machine vision has been devel-
oped for precision farming include weed detection for site specific
herbicides spraying, row detection for autonomous navigation and
fruit detection for yield estimation or robotic harvesting.

Maybe the most acute problem with machine vision is the prob-
lem of color changes caused by variation in natural illumination,
both in intensity and spectral content. Common practice when
dealing with intensity changes is the use of color ratios, whereas
changes in spectral content present more of a problem. Various
methods have been proposed for image binarization when the
intensity of the illumination varies (Onyango and Marchant, 2003;
Granitto et al., 2005; Tian and Slaughter, 1998; Nieuwenhuizen et
al., 2007). These methods are based on ratios between color chan-
nels, or indices like Excessive Green (EG) and Red minus Blue (RB),
or the angular position of a pixel in a plane normal to the illumina-
tion vector in the R, G, and B coordinate space.

Spectral changes in the illumination can also be compensated
when assumptions about the functional form of the illumination’s
spectral characteristics are made. Most of the activities in preci-
sion agriculture are performed outdoors under natural daylight.
When natural sunlight is considered as the illumination source,
it can be represented in a form whereby it is possible to derive
a monochrome image that is invariant to illumination spectral
changes (Marchant et al., 2004), from a 3-band color image.

Precision agriculture in orchards considers the tree as an indi-
vidual production unit. In such an approach, sensing technologies
are required in order to provide information about the status of
each tree, regarding the nutrients, water status, fruit load and yield.
The technology for nutrients and water status detection is similar
for field crops. Nevertheless, yield estimation, as well as site spe-
cific (tree specific) handling often depends on the fruit load of the
tree. Therefore, much effort has been invested in automatic fruit
detection and yield estimation of fruits.

Some of the fruits have distinct color differences from the foliage
and make them more distinguishable (for example mature oranges,
red apples) and others have colors similar to that of the tree
canopy, making them more difficult to detect (for example imma-
ture oranges and green apples). Color machine vision has been
found useful for detection of Fuji apples (red in color) in the tree
canopy when the color contrast is high (Bulanon et al., 2002). Mul-
tispectral imaging showed the potential for detecting immature
green oranges (Kane and Lee, 2007). Hyperspectral imaging, along
with morphological image processing was also shown to have good
potential for detecting green apples in the tree canopy (Safren et
al., 2007).

Occlusion is an obstacle to two-dimensional machine vision
recognition of fruits and plants in natural outdoor scenes. The
watershed algorithm was proved to be suitable to improve the
recognition of occluded fruits in a tree canopy, as well as plant
leaves (Safren et al., 2007; Lee and Slaughter, 2004).
2.3. Thermography

Thermal imaging has been also used for estimating the num-
ber of fruits in orchards and grooves (Stajnko et al., 2004; Wachs
et al., 2009; Bulanon et al., 2008). The detection of the fruits is
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ased on the assumption that their temperature differs signifi-
antly from the surroundings. This hypothesis is true in many
ases, since the thermodynamic properties of fruits are different
han those of the surrounding objects: both fruits and biomass
onsist mainly of water; but fruits’ mass is usually larger than
hat of other biomass elements like leaves, making their tran-
ient thermodynamic response, and specifically the time constant
f the transient response, significantly different. Nevertheless, the
ruits’ temperature is also affected by the intensity of the inci-
ent radiation, ambient temperature, relative humidity and wind
peed.

Image processing algorithms are more effective in detecting the
ruits when the contrast between fruits and surroundings is maxi-

um. In an attempt to evaluate the best time for fruit detection, the
hermal temporal variation in citrus canopy was analyzed (Bulanon
t al., 2008). A relatively large temperature difference between fruit
nd canopy occurred from the afternoon, around 16:00, until mid-
ight. This enhanced the fruit in the thermal images and facilitated

ruit detection (Bulanon et al., 2008; Stajnko et al., 2004). Bulanon
t al. (2008) employed a segmentation approach using the his-
ogram tail method, which proved to be effective in discriminating
he fruit from canopy especially when the temperature difference
etween leaves and fruits was large. An average true positive rate of
.70 and a false positive rate of 0.06 were achieved. Since this suc-
ess rate is marginal for robotic harvesting, thermal imaging was
onsequently fused with additional vision systems to improve the
erformance.

Stajnko et al. (2004) used the pseudocolor thermal image
nd color image processing tools to detect the fruits. In such an
pproach, the temperature information in the image is transformed
o a color according to the chosen color mapping. The results of
mage processing may then depend on the color coding of the pseu-
ocolor image. The number of apples automatically detected was
ighly correlated with the number of fruits manually counted in
he images. Furthermore, the fruit diameter could also be evalu-
ted from the thermal images, with better accuracy obtained when
he fruits were ripe.

Fusion of multi-modal images (thermal and RGB) can enhance
he detection accuracy of fruits (Bulanon et al., 2008; Wachs et al.,
009). A first step to fuse thermal with RGB images is to co-register
he images. Automatic registration using a combination of a num-
er of similarity measures proved to be superior than using each of
he similarity measures alone (Wachs et al., 2009). This combina-
ion method finds the optimal transformation parameters for each
air of TIR and RGB images to be registered. The method uses a
onvex linear combination of weighted similarity measures in its
bjective function.

Furthermore, field emissivity measurements of leaves show that
here is useful spectral information that may be detectable by pas-
ive remote sensing in the thermal infrared (da Luz and Crowley,
007). A number of organic materials and compounds present in

eaves display characteristic TIR spectral features, although the
ppearance of such features is quite variable owing to interspecific
ifferences in cuticle composition and structure. Remotely discern-

ng the subtle emissivity features of leaves in their natural canopy
eometries continues to present major technical challenges. In
rder to minimize spectral contrast losses due to canopy voids and
ultiple scattering, sensors having both a high signal-to-noise ratio

nd a field of view on the scale of individual leaves will be required.
tmospheric compensation methods and spectral analysis algo-
ithms also will require refinement to permit the extraction of plant

missivity features. As technical capabilities improve, understand-
ng the TIR spectral contributions of leaves will become increasingly
mportant, and ultimately, may enable new types of remote sens-
ng observations over vegetation canopies (da Luz and Crowley,
007).
cs in Agriculture 74 (2010) 2–33

3. Weed detection for site specific spraying

Weed detection for site specific weed management is perhaps
the most common application of machine vision related to site spe-
cific crop management. There are two aspects when weeds need to
be automatically detected: (a) detection of weeds presence in the
field while discriminating them from the crop itself; and (b) identi-
fication of the type of weed among all the detected weeds in order
to fit the appropriate chemical for spraying. The first task is simpler
since it has to distinguish between two classes, while the second
task is more complicated since there are several different classes of
weeds.

Detection of crop plants is the complementary task of detecting
the weeds. Sometimes, this makes the task easier since the crop
plants are usually more uniform than the weeds and have a more
known geometrical structure. This approach is employed with
selective herbicide application (Lee et al., 1999) and mechanical
weeding systems which are based on the principle of continu-
ously performing the weeding function while intelligently avoiding
the crop plants (van der Weide et al., 2008; Tillett et al., 2008).
Some of them use simple crop detection systems based on light
interception (van der Weide et al., 2008) and others identify crop
plants on the basis of a combination of color and shape parame-
ters with classification algorithms, e.g., two-dimensional wavelets
algorithms (Tillett et al., 2008).). In a slightly different approach,
the generation of plants map can be performed during seeding or
transplanting by recording their position while seeding or trans-
planting in the field. In this case, high accuracy and real time GPS
systems have to be used (Ehsani et al., 2004; Sun et al., 2009). An
accuracy of 2–3 cm in the mapped plant position has been reported,
which makes this approach potentially applicable for selective her-
bicides spraying. The most significant error source in this approach
was associated with the sensor that detected the seed or plant
at the position where its location was recorded using the RTK
GPS.

Nevertheless, the most commonly investigated task is detection
of the weeds in the acquired images as well as identification of the
weed species. Weed species identification is performed either by
explicitly extracting the geometric shape of the weeds or by statis-
tical pattern recognition methods. Some of the reported methods
use also the structure of the rows as an additional support indi-
cation when assigning the detected objects to a class (crop plant
or weed) (Shrestha et al., 2004). When spatial information about
the rows is not included in the analysis, color and geometric fea-
tures are used for discriminating weeds and plants. Color ratios are
mainly used to extract the green material from the soil background
and to discriminate between crop plants and weeds when there is a
difference in their color (Bossua et al., 2008; Nieuwenhuizen et al.,
2007; Marchant et al., 2004). The robustness of using color ratios
for crop plant and weed discrimination is limited and depends on
the local conditions.

Spectral leaf reflectance is used in several studies, to discrim-
inate between crops and weeds. In controlled conditions in the
laboratory, it has been shown that it is possible to discriminate with
high accuracy between crop and weeds, as well as between weed
species, using the spectral reflectance of the leaves (Borregaard
et al., 2000). In field conditions though, the variability in spectral
reflectance decreases the detection accuracy and, practically, only
distinction between weed infected areas and weed free areas can
be reliably performed (Goel et al., 2002). While there is evidence
that spectral properties can be used to discriminate between a cer-

tain set of crops and weeds, frequently different wavebands are
selected for each crop/weed pair. Research is needed over multi-
ple seasons to investigate the stability of multispectral classifiers
for plant species recognition of field crops and weeds (Zwiggelaar,
1998).
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Texture analysis using color co-occurrence matrices (CCM) is
ne of the common methods of statistical pattern recognition and
as been successfully used for weed species classification in differ-
nt plant maturity stages (Burks et al., 2002). The hue, saturation
nd intensity of color images are usually used for CCM calculation.
ifferent classification schemes select the texture variables with

he greatest discriminant capacity, and combine them in discrimi-
ant analysis and artificial neural networks, to classify weed species
ithin and across maturity levels. The achieved accuracy of weed

pecies detection reaches as high as 97% (Burks et al., 2002, 2005,
000). Statistical pattern recognition can be also applied on binary

mages: after plant material is extracted from the soil. Using the
ifference in multi-spectral images at 660 and 800 nm, cotton can
e segmented from weeds using local inhomogeneity of pixel val-
es (Alchanatis et al., 2005) and 86% of the pixels were classified
orrectly.

Geometrical shape of the green elements in an image has been
lso extensively used for weed detection. Combination of size,
hape and color enabled detection and mapping of volunteer potato
n corn and sugar beet fields (Nieuwenhuizen et al., 2007; Van Evert
t al., 2006), as well as distinguishing between corn plants and
eeds (Shrestha and Steward, 2005). Weeds’ and plants’ shape
as been described by elliptic Fourier (EF) analyses (Neto et al.,
006) active shape models (ASMs) (Persson and Åstrand, 2008),
avelets and Gabor filers (Bossua et al., 2008). Shape features,

ombined with classification schemes of k-NN and discriminant
nalysis resulted to detection accuracy ranging from 80 to 97%. The
ethod that employed ASMs managed to overcome problems of
eeds occluding the crop, while wavelet based methods were able

o process images with perspective distortion.
Accurate weed detection and mapping is essential for site spe-

ific weed management, but there is a trade-off between increasing
he sensitivity of the detection system vs. the possibility of, in doing
o, misclassifying some crop plants as weeds and inadvertently
emoving them. Examination of different competition scenarios
etween crop and weeds showed that combining a detection sys-
em with a competition model presents a new opportunity to
uantify the sensitivity of image classification in terms of yield
Grundy et al., 2005).

.1. Row detection

Row detection in precision agriculture is mainly associated
ith autonomous navigation or as an aid for weed detection. The
ajority of the developed systems use color images, taken with
perspective angle. Since crop lines are usually straight, most of

he image processing algorithms for row detection are based on
ough transform, which has the inherent characteristic of detect-

ng straight lines (Van Evert et al., 2006; Åstrand and Baerveldt,
005; Gee et al., 2008; Bakker et al., 2008). Unlike the majority
f reported algorithms, methods that do not rely upon the seg-
entation of plant material from the background are also reported.

ather, the periodic amplitude variation due to parallel crop rows
s exploited. Given the geometry of the camera arrangement and
he crop row spacing, a filter is derived which allows the crop rows
o be extracted whilst attenuating the effects of partial shadow-
ng and spurious features such as weeds (Hague and Tillett, 2001).
n another work, row detection was performed by segmentation
sing color (Slaughter et al., 1999), K-means clustering algorithm,
ow detection by a moment algorithm, and guidance line selection
y a cost function. Auxiliary information, such as the known crop

ow spacing, can be used to aid in the development of the guidance
irectrix (Han et al., 2004).

Row detection is broadly applied in the initial stages of crop
rowth, where the crop plants form a continuous line and row
etection relies on the continuousness of the green objects. Nev-
ics in Agriculture 74 (2010) 2–33 7

ertheless, systems that detect the seed rows have been also
developed, to assist guidance of seeding machines (Leemans and
Destain, 2007) as well as systems using laser ranging technology to
detect swath edges for combine guidance (Coen et al., 2008).

Machine vision and laser radar (Lidar—Light detection and
ranging) were individually used for guidance in orange grooves
(Subramanian et al., 2006; Subramanian et al., 2005). Lidar-based
guidance was found to be a better guidance sensor for straight and
curved paths at speeds of up to 3.1 m/s. However, additional test-
ing is needed to improve the performance. It was proposed that a
control scheme, which used both machine vision and laser radar,
may provide a more robust guidance, as well as provide obstacle
detection capability. Obstacle detection was reported also using a
stereo camera, having good performance when the obstacle was in
the vicinity of the vehicle (Wei et al., 2005).

4. Crop water status using thermography

Thermography can be used to measure canopy temperature.
Similarly to visible (RGB) or NIR images, thermal images contain
spatial information about the imaged objects. On the other hand,
they have two main basic differences: First, thermal infrared (TIR)
images contain information about energy emitted as electromag-
netic waves from the bodies surface, while RGB and NIR images
contain information about electromagnetic energy reflected from
the bodies surface. Second, the spectral range of the thermal
infrared from 3 to 12 �m, while RGB and NIR images are in the range
from 0.35 to 1.0 �m. RGB images are related to pigment absorption
(chemical composition), NIR images are related to scattering (geo-
metrical cell structure), and TIR images are related to the object’s
thermodynamic properties and emissivity, and surrounding condi-
tions. Therefore, each image type has a different thematic content
which makes them complementary.

The main sensing tasks in precision agriculture where ther-
mal imaging plays a major role are mapping of crop water status,
detection and mapping of crop diseases and detection of fruits in
tree canopies. The temperature of the canopy has long been rec-
ognized as a measure of plant water status (e.g., Tanner, 1963).
Recent developments in thermal imaging have opened opportuni-
ties for mapping of crop stresses, and mainly crop water stress using
its temperature (Moeller et al., 2007). Much of the early work on
thermography and water status estimation was based on handheld
thermometers, which measure a temperature average over a sin-
gle target area. Soil, trunk or dead tissue might be included in the
sample area, potentially leading to considerable errors in estimated
canopy temperature, particularly in sparse vegetation (Moran et al.,
1994). Recent technological advances in thermal imagery offer the
potential to acquire spatial information on surface temperature in
high resolution.

Canopy temperature alone, cannot be an absolute indicator of
water stress since it is affected by the meteorological conditions at
the time of measurement. An index that normalizes these condi-
tions was suggested, the ‘Crop Water Stress Index’, CWSI (Idso et
al., 1981). CWSI is based on the difference between canopy tem-
perature, as measured by infrared thermometry (IRT), and that of a
‘non water-stressed baseline’ referring to the temperature of a well
watered crop.

The use of normalized CWSI using natural wet and dry reference
surfaces was proposed by Clawson et al. (1989). This approach was
used by Leinonen and Jones (2004) where they used plants as natu-

ral wet and dry reference surfaces. However, these natural surfaces
might not necessarily be uniform and difficulties are likely to arise
with regard to their reproducibility. Meron et al. (2003) addressed
these problems by using an artificial wet reference surface (AWRS)
for estimating the temperature of a well watered crop. The suc-
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Table 1
Specifications of digital communication devices.

ZigBee IEEE802.15.4 Bluetooth IEEE802.15.1 Wireless LAN IEEE802.11b/g/n

Frequency 2.4 GHz/915 MHz 2.4 GHz 2.4 GHz
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and the longest communication range (Table 1). Currently, Wi-Fi
is best for practical sensor networks in open fields. Yet we have a
difficult problem that the communication range is not sufficient for
the size of most farms. Microwave radio cannot permeate through
Baud rate 250 kbps
Power consumption 40 mW
Communication range 100–300 m
Energy efficiency 6 Mbps/W

essful use of these artificial references on a sub-plot scale has also
een reported by Cohen et al. (2005) and Alchanatis et al. (2010),
ho used thermal imagery for evaluating and mapping leaf water
otential of cotton under various irrigation regimes.

Mapping the water status of larger areas by means of low alti-
ude (50 m) airborne thermal imaging has been reported (Meron et
l., 2010). Water status maps of cotton and peanut fields were cre-
ted and validated. Canopy temperature was statistically extracted
sing histogram based analysis. Pixel by pixel processing was not
ossible due to the high degree of blurring, but the statistical anal-
sis extracted only pixels that represented canopy temperature.

Due to their complementary nature, combination of visible
GB, NIR and TIR images can provide additional information. Ther-
al, in conjunction with visible and NIR images enable exclusion

f non-leaf material in the estimate of canopy temperature and
he possibility of selecting specific parts of the canopy for water
tress estimation (Moeller et al., 2007; Leinonen and Jones, 2004;
lchanatis et al., 2006). Spatial patterns are created based on one
f the images (e.g., color processing of the RGB image) and then
uperimposed on the other (e.g., mask on the thermal image). This
llows isolating leaves that are exposed to uniform environmental
onditions and enables better interpretation of their temperature
ccording to known prevailing environmental conditions.

Combination of thermal with RGB data can be also used without
irectly associating spatial patterns from one image to another. Vis-

ble light imaging can be used to calculate changes in the surface
tructure and reflectance. Grey-level concurrence matrix (GLCM)
exture features can quantify changes in the sample surface struc-
ure while RGB color ratios can detect changes in its reflectance.
ombining those features with thermal images, Ondimu and
urase (2008) found a correlation between the water status of

unagoke moss samples and their CWSI, GLCM texture and RGB
olor ratios. Although the reported study was performed only with
unagoke moss, this method could be extended to both biotic and
biotic stress detection in other plants.

. Sensor network for agriculture and field monitoring

Environmental data are very important in agriculture, since crop
ields depend on environmental conditions, and the response of
lant growth to changing environmental conditions is extremely
omplicated. In fact, the relationship is much more complicated
han the ways it has been understood so far because the complex-
ty is caused by chaos (Hirafuji and Kubota, 1994), and generally
peaking, enormous amounts time-series data are required to pre-
ict/control chaotic systems.

Recently, high-throughput sequencing technology has enabled
he determination of entire plant genomes in a short time
Shendure and Ji, 2008). However, phenotypic data of these vari-
ties is still scarce because there have been no automatic tools
o measure both the environmental and phenotypic data simul-

aneously. For example, Buckler et al. (2009) collected a huge
et of phenotypic data manually to examine variations in flow-
ring time of 5000 recombinant inbred lines (maize Nested
ssociation Mapping population, NAM) in eight environments,
sing a total of one million plants, since flowering time is a
721 kbps/2.1 Mbps 11/54/300 Mbps
100–400 mW 0.5–6 W
10–100 m 100 m–30 km
7–21 Mbps/W 22–50 Mbps/W

complex trait that controls adaptation of plants to their local
environment.

Thus, we need to collect enormous amounts of data in the
field. On the other hand, it is reasonable to assume that huge
amounts of weather data must already be available if all the
databases in the world are integrated. Laurenson et al. (2001, 2002)
actually combined almost all weather databases by developing
data-grid middleware, MetBroker. MetBroker provides a standard-
ized software interface for programmers to develop agricultural
applications quickly. As a result, weather data from about 23,000
sites are integrated and can be viewed on integrated maps. While
23,000 seems like a large number, in fact only one weather station
exists per 21,000 km2 on average. There are few weather stations
in the interior of countries. To make matters worse, important data
such as solar radiation, soil moisture and CO2 concentration, which
affect plant growth, are not collected.

Farmers and researchers must obtain data at their sites by them-
selves, but conventional weather stations are too expensive and too
large. So far, data loggers have been employed for such purposes,
but users must visit these stations frequently simply to collect the
data. To solve these problems, sensor networks are desirable.

5.1. What is wireless sensor network?

A wireless sensor network consists of distributed sensor nodes
which contain sensors and a wireless communication device.
Nowadays, as commercial products of sensor nodes, MOTE,6 Field
Server,7 SUN SPOT8 and many kinds of products using ZigBee
(IEEE802.15.4)9 are already available. The actual size of these sensor
nodes, equipped with a waterproof case for outdoor deployment,
is not so small. The diameters are 10–20 cm, or sometimes much
larger, with poles to fix them on the ground, solar panels, recharge-
able batteries and external sensors. In the future, a sensor node will
be a single chip and its size might be as small as a dust particle (Kahn
et al., 1999). Although the size is not important for use on farms, it
would truly be a great advantage if the cost of sensor nodes fell, as
in the case of pocket calculators.

Almost all these sensor nodes use 2.4 GHz radio waves, which
are well absorbed by water molecules, as microwave ovens use
this frequency. A sensor node that uses a wireless device is legally
available after its manufacture obtains a certification from the
country’s communications authority: for example, the FCC in the
United States. We can find the certification logo “FCC” on the back
of wireless communication appliances. The communication range
of Wi-Fi can be enlarged by using high-gain directional antennas
under the certification. So far most commercial sensor nodes for
factories employ ZigBee. However, Wi-Fi has the highest efficiency
6 http://www.xbow.com/.
7 http://www.elab-experience.com/.
8 http://www.tauzero.com/Rob Tow/Sun-SPOTS-Sensor-Networks.html.
9 http://www.zigbee.org/.

http://www.xbow.com/
http://www.elab-experience.com/
http://www.tauzero.com/Rob_Tow/Sun-SPOTS-Sensor-Networks.html
http://www.zigbee.org/
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5.3. Data collection and applications
W.S. Lee et al. / Computers and El

bstacles such as mountains, forests, buildings and metallic walls.
line of sight is indispensable to establish connection.
A solution to this problem is to relay information. Long distances

an be connected by multi-hop relay, and a detour by the relay net-
ork can avoid large obstacles. This method has other advantages:

nergy saving and robustness of sensor networks. The electric field
ntensity of the radio wave, E, is attenuated to the distance of the
ransmitter and receiver, r, as:

(r) ∝ 1
r2

(1)

If the distance, r, becomes half, then E increases by a factor
f 4; hence, we can decrease the power of the transmitter up to
/4 to maintain the same electric field intensity. Then the total
ower consumption can be decreased to a half. In fact, the total
ower consumption of electric devices such as receiver, sensors
nd camera cannot be neglected. In any case, multi-hop relay can
onnect sensor nodes in a wide area effectively, and the wireless
ensor network can measure spatially an area where the sensor
odes are deployed (Fig. 1). Mesh-networking can keep connec-
ions among sensor nodes even if some sensor nodes are broken.
imultaneously, they can provide the service of Wi-Fi hotspots,
here farmers, residents and visitors can connect to the Internet.
esh-network protocol is supported by ZigBee and some low-

ost Wi-Fi routers such as Meraki10 and RMR.11 While the Wi-Fi
esh network standard, IEEE802.11s, is still in the drafting pro-

ess, OLPC (One Laptop per Child),12 previously known as the “$100
aptop”, also employs a Wi-Fi mesh network, which is very useful
or constructing ad hoc wireless network infrastructure in develop-
ng countries. The situation of network infrastructure that OLPC is
ssuming is exactly the same as that of the wireless sensor network
n agriculture.

.2. Sensor networks for agriculture

Precision agriculture demands intensive field data acquisition.
requent data acquisition and interpretation can be the key to
nderstanding productivity variability. Wireless sensor networks
re a new technology that can provide processed real-time field
ata from sensors physically distributed in the field (Camillia et al.,
007). Typical applications of sensor networks in agriculture are:

Management of farming
Precision agriculture
Optimization of plant growth
Surveillance in farms
Advertisement for consumers
Education and training for better farming
Research

The applications of sensor networks using ZigBee are numer-
us (Baggio, 2005; Hebel, 2007; Ruiz-Garcia et al., 2009; López
iquelmea et al., 2009). Sensor networks using ZigBee are con-
ected to the Internet through a gateway node, which functions as
media converter from ZigBee to the Internet. However, network

nfrastructure in rural areas is poor in general. The emergence of 3G
International Mobile Telecommunications-2000) and WiMAX in

ural areas promises to increase access to alternative media except
or the problem of cost. Wireless LAN (Wi-Fi) is useful as a long-
ange wireless communication technology for sensor networks.
imultaneously, it can be a wireless network infrastructure for res-

10 http://meraki.com/.
11 http://www.thinktube.com/en/.
12 http://laptop.org/.
ics in Agriculture 74 (2010) 2–33 9

idents and farmers working on farms to have ubiquitous Internet
services (Hirafuji, 2000).

Sensor nodes for agriculture must be durable and rugged to
protect the electric devices in the cases. This is their most char-
acteristic feature in comparison to sensor networks designed for
industrial use. Environmental conditions to deploy sensor net-
works for agriculture are very diverse. In a sense, farms are extreme
environmental fields, with very wide ranges of ambient air tem-
perature (between −40 and 50 ◦C) and relative humidity (0–100%).
Moreover, there are interferences caused by agricultural chemicals
and organisms such as livestock, insects, plants and microorgan-
isms. For example, sensor nodes are exposed to the menace of being
trampled by cows at ranches (see sensor network Web sites13,14).
Especially for long-term real-time observation under such extreme
environments, there exist a lot of site-specific problems to be solved
each time (Hirafuji et al., 2008a,b). Data frequently goes missing
due to failures caused by various reasons (Kotamäki et al., 2009).
For example, some electric devices such as electrolyte capacitors
and lead-acid batteries cannot work normally under extremely low
temperature, and CPUs are hung up under higher temperature, like
PCs, which are often hung up even at room temperature. Cases and
cables of sensor nodes are gradually eroded by thermal expansion
caused by changing temperature, strong solar radiation, chemicals,
heavy rainfall and strong wind; finally, condensation on printed cir-
cuit boards corrodes the wires of electric components and printed
circuits.

Sensors are affected by environmental conditions in the open
field: for example, temperature sensors to measure ambient air
temperature are affected by solar radiation. So the temperature
sensor must be isolated carefully from such artifacts. Unfortunately,
most sensor nodes are packed in simple plastic cases, since this
kind of equipment was not originally designed as meteorological
data acquisition systems. The worst measurement errors by some
commercial sensor devices, which are sold at stores for general pur-
poses, were 3–10 ◦C for solar radiation and radiative cooling. This
range of error is not acceptable in agricultural applications such as
plant growth models, since accumulated temperature is frequently
used for predictions of flowering and yield of crops (Hirafuji, 2009).

Hirafuji and Fukatsu (2002) developed a multifunctional sensor
node that can collect many kinds of data for agricultural applica-
tions. The Field Server functions as a web server, a Wi-Fi access
point, IP camera (network cameras), LED lighting, and a sensor node
on farms (Fig. 2). The Field Servers have been deployed at many sites
globally for agricultural researches (Hirafuji et al., 2007). A local-
ized Field Sever was developed in Thailand, and several hundreds of
Thai Field Servers were deployed in Thailand for research and edu-
cation (Paiboonrat, 2006). Wan et al. (2008) deployed Field Servers
that were constructed by their group in order to secure food pro-
duction at chicken farms. Several Field Servers were deployed in
Himalaya to monitor the melting of Imja glacial lake located beside
Mt. Everest (Fukui et al., 2008; Hirafuji et al., 2008a,b; Pun et al.,
2008). Practically, Field Servers can be used as a method of public
relations for consumers15,16 and residents.17
Sensor network applications for agriculture are being developed
rapidly, and the results have been reported at international con-

13 http://fsds.dc.affrc.go.jp/data3/Kouzu/.
14 http://research.ict.csiro.au/.
15 http://www.ucc.co.jp/company/livecamera/.
16 http://www.quark.bio.mie-u.ac.jp/olive/en/index en.html.
17 http://www.iwatou.net/fs/.

http://meraki.com/
http://www.thinktube.com/en/
http://laptop.org/
http://fsds.dc.affrc.go.jp/data3/Kouzu/
http://research.ict.csiro.au/
http://www.ucc.co.jp/company/livecamera/
http://www.quark.bio.mie-u.ac.jp/olive/en/index_en.html
http://www.iwatou.net/fs/
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Fig. 1. Types of wireless networks. Circles indicate Wi-Fi hotspots, where users can access the Internet by Wi-Fi. ZigBee networks cannot serve as Wi-Fi hotspots.
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Fig. 2. Deployments o

erences such as WCCA,18 AFITA,19 EFITA,20 INFITA21 and APAN.22

iscussions towards data integration and standardization are being
eld in several groups such as the Sensor Web Enablement Working
roup in OGC (Open Geospatial Consortium) and the GEOSS Sen-
or Web Workshop in GEO (Group on Earth Observation). Note that
he terminology “sensor web” was first used by NASA to describe
heir wireless sensor network for surveillance of Mars (Delin and
ackson, 2000). Their sensor web was not a web server. The mean-
ng of the term “sensor web” has been extended to WWW services
ncluding sensor networks or Web-based sensor networks (Quan
t al., 2009). So far sensor data have been recorded as binary data
les, text files (CSV) or records of DBMS. Some of such data files
ave been lost. The rests are archived as so-called “legacy data”,
ince applications cannot read data files without metadata (infor-
ation to describe the data files). Recently XML has emerged as
common machine-readable file format, by which an application

an read another application’s data file (XML) automatically using
ts metadata file (XML).

Hoshi et al. (2003) proposed an information exchange standard
ormat on XML for plant production (BIX-pp). Using BIX-pp, they
eveloped an application for sensor networks constituted by the
ield Servers. The application can record many kinds of data such
s plant growth, farm work, use of agricultural chemicals, amount
f products, etc. (Hoshi et al., 2007). Honda et al. (2009) integrated
ensor data and Web GIS using SOS (Sensor Observation Service),
hich is a standard web service interface (i.e., API) for managing

eployed sensors and retrieving sensor data.

Conventional sensor nodes automatically send data: it is “push-
ype” sensor node. On the other hand, Web-based sensor nodes
e.g. Field Servers) wait to be accessed by users or other computer

18 http://www.wcca2009.org/.
19 http://afita2010.ipb.ac.id/index.php/afita2010/afita2010.
20 http://www.efita.net/.
21 http://www.infita.org/.
22 http://www.apan.net/.
or networks in farms.

programs such as agents and applications: it is “pull-type” sensor
node (Hirafuji et al., 2009). Users can control the pull-type sen-
sor nodes easily, simply by using a Web browser such as Internet
Explorer (Fukatsu and Hirafuji, 2005). Instead of a user’s manipula-
tion, the agent accesses Web-based sensor nodes to collect sensor
data, and then stores the data converted into XML files and HTML
files for a Web server, which works as a user interface to share the
data (Fig. 3). An architecture based on an agent and Web-based
sensor network (Fukatsu et al., 2006) constitute the concept of the
Sensor Web. For example, programmers can develop applications
in a short time by a mashup of the Web-based sensor networks
and other Web services (e.g. Google Maps). Tanaka and Hirafuji
(2009) demonstrated complex applications developed by a mashup
of Google Earth, agricultural models, weather databases and sen-
sor networks. The Web-based sensor networks are advantageous
in terms of the scalability of the sensor networks; the agent can col-
lect data from an enormous number of sensor nodes sequentially.
This manner is similar to a Web crawler which collects indexing
data over all Web servers automatically. If an enormous number
of push-type sensor nodes send data into a data storage server at
once, their attempts at access would damage the storage server, for
instance resulting in DDoS (Distributed Denial of Service).

5.4. Advanced sensing for agricultural sensor networks

Sensor networks are able to collect high-resolution images at
farms in real time (Fig. 4). Such image sensors are thought to be
a kind of universal sensor: they can be used for remote sensing to
monitor plant growth, real-time surveillance against the deceptive
labeling of production centers and bio/agro-terrorism (Hirafuji et
al., 2004). Plant growth rate can be measured by images. For exam-
ple, Iwabuchi and Hirafuji (2002) found that plant seedlings rotate

by circumnutation at night, and the growth rate of each seedling
can be estimated by the maximum speed of rotation. Speed of rota-
tion can be easily measured from time-lapse images using optical
flow technique (Fig. 5). Tanaka et al. (2008) developed a Web appli-
cation to detect unusual changes in images, since sensor networks

http://www.wcca2009.org/
http://afita2010.ipb.ac.id/index.php/afita2010/afita2010
http://www.efita.net/
http://www.infita.org/
http://www.apan.net/
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Fig. 3. Examples of collected data from sensor networks.
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ig. 4. A sample image of a potato farm. The right picture is the rectangular part i
ensor node, deployed at Namche Bazaar, Nepal. http://fsds.dc.affrc.go.jp/data4/Him

ollect too many images for users to find important changes such
s unlawful dumping on farms. Using this application, Asai et al.
2008) found that crickets (Teleogyllus emma) were the primary
eed predators of wild oat and Italian ryegrass, which are problem-
tic weeds in small-grain cereal fields in Japan. Cropping systems
nvolving a summer no-till period reduce the density of the sub-
equent generation of weeds in comparison with tilled rotation
ystems. Extending the duration of the no-till period suppresses
eed seedling recruitment. Unusual images among the enormous

umber of images collected by sensor networks revealed that this
uppression was caused by crickets (Fig. 6).

Hashimoto et al. (2007) developed an integrated field mon-
toring system for sustainable and high-quality production of

Fig. 5. Motion speed measured by op
left picture. This picture was taken by a digital single reflex camera equipped in a
n/.

agricultural products combining sensor networks and advanced
sensing technologies, including X-ray fluorescent (XRF) and
mid-infrared (MIR) spectroscopic analysis of leaves to evaluate
nutrimental elements of the plant vigor.

Oki et al. (2009) developed an integrated agricultural moni-
toring system based on the use of high-spatial-resolution remote
sensing imagery and data on sensor networks in a cabbage farm. It
can produce cabbage coverage maps that provide information on
cabbage growth that could be used for agricultural land manage-

ment, particularly with regard to the application of fertilizer and
forecasting of crop production. Hirafuji et al. (2008a) developed
an insect counter for sensor networks. Although the count data
may contain noise caused by raindrops on windy condition, fake

tical flow of time-lapse images.

http://fsds.dc.affrc.go.jp/data4/Himalayan/
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used to successfully estimate tree volume within 2.6% of the true
ig. 6. A cricket (Teleogyllus emma) captured by infrared camera. Crickets appear
very night to eat the seeds arranged under the IR camera.

ounts can be eliminated by using the images. Thus, sensor net-
orks equipped with multiple sensors can improve the reliability

f sensor data with assistance of sensor fusion technology.

.5. Discussion

Agro-ecosystems and environments in farms are not uniform, so
ensor networks are indispensible for collecting spatial time-series
ata and time-lapse images in real-time. Sensor nodes for agricul-
ure should equip a lot of sensors and cameras to measure both
nvironments and crops simultaneously. Such sensor networks can
e a key technology for precision agriculture, water-saving culti-
ation and sustainable agriculture. In the future, sensor networks
ill be a method of in situ phenotyping by sensing more biological
ata such as microscopic images, proteins and sugar chains on site;
he synergistic effect with recent high-throughput sequencers will

ake breakthroughs in biology and agricultural sciences.
As for the shortage of network infrastructure in rural areas,

hoosing the optimal combination of Wi-Fi, ZigBee, 3G and WiMAX
an be a solution. Sensor networks have been deployed even in
eveloping countries and extreme situations. However, it is still a
ifficult problem to cut the cost of sensor networks. In principle, the
ollowing points are required for widespread deployment of sensor
etworks in agriculture and field monitoring:

Low cost
Easy to use
Durable and rugged
Long-range communication
Scalability to a high number of sensor nodes

All of these objectives have been accomplished except for “low
ost”. Mass production may realize low-cost sensor networks since
he price of commercial products generally depends on the num-
er of products sold. The price of sensor nodes can be sufficiently
ecreased only by producing 1000 units. If orders are million or bil-

ion units, then the cost can be 1/10–1/100. For example, currently
he cost of a hand-made Field Server is about US$1000. If one million
ield Servers were produced by automation, the cost could be less

han US$100. Such low-cost sensor nodes can be deployed in high
ensity, and long-range communication can be realized by relay-

ng among the sensor nodes. Moreover, the greater the number of
ensor nodes, the more robust the sensor network.
cs in Agriculture 74 (2010) 2–33

Let us assume that the MTBF (Mean Time Between Failure) of a
sensor node is 1 year, and 12 sensor nodes are deployed. Then one
failure per a month is observed on average, but the sensor network
can keep working continually for several years without mainte-
nance simply by relying on the sensor nodes that are still active. On
the contrary, if only one sensor node is deployed in the site, data is
missing after its failure and maintenance is needed every year. Mass
production is still difficult in this initial stage of introducing sen-
sor networks in agriculture. Investigation for durable sensor nodes
with longer MTBF may realize the “low cost” objective without
mass production. Moreover, mass production can cut more costs
after this initial stage, and then spatial time-series data in fields
will be more easily available.

6. Canopy volume/crop biomass detection

Canopy volume of tree and other specialty crops is an important
factor for precise fertilizer application, irrigation, chemical applica-
tions, as well as health assessment (Smart et al., 1990; Haselgrove
et al., 2000; Wood et al., 2003). It relates to crop yield for tree crops.
Smart et al. (1990) described the relationship between canopy man-
agement and yield for grape. Haselgrove et al. (2000) discussed
light exposure and phenolic compounds of berries in different
canopy conditions. Wood et al. (2003) investigated the relation-
ship between pistachio nut fruit ripening date late season canopy
retention.

There have been several attempts for canopy volume assess-
ment, utilizing different methods such as ultrasonic, laser scanning,
aerial sensing, and light penetration measurement of the canopy.
These different methods are described below. As an earlier work,
Turrell et al. (1969) studied the changes in feature data of citrus
trees over a period of time. They discussed establishing growth
equations for different variables for the citrus varieties using above-
ground tree parameters including tree height, branch size and
number, leaf surface area, number of leaves, and many others (trunk
diameter, fruit yield, fruit size, fruit diameter, fruit weight, woody
frame, branch number, root density, and yield). Results showed
that citrus trees and tree parts followed growth curves similar to
non-woody plants. A significant amount of the physico-chemical
processes that underlie tree growth were found to be linear semi-
log or log-log functions. In the 1970s, Albrigo et al. (1975) evaluated
various tree measurements (canopy fruit bearing densities, tree
height, canopy skirt height, canopy max diameter in horizontal
plane, and vertical height to max diameter) to determine reliable
yield and reported that the R2 between canopy volume and fruit
weight ranged from 0.24 to 0.85 using multiple stepwise regression
and correlation to yield, and that no other combination of the vari-
ables predicted accurate yields. This information was all measured
manually.

6.1. Laser scanning

Since 1970s, laser ranging has been used in many areas, how-
ever it was the late 1980s when the laser technology was used
for forest biomass detection and crop production. Nelson et al.
(1988) implemented an airborne pulsed laser system to assess
forest biomass and timber volume. The same technique could be
applied to specialty tree crops for canopy volume assessment. They
used a frequency-doubled Nd:YAG laser at 0.532 �m to acquire the
profiling data. They reported that airborne laser profiling data was
mean. They also reported site specific variability of tree volume and
biomass. In the 1990s, Ritchie et al. (1993) utilized a laser altimeter
to quantify vegetation properties. Results showed a variation in the
canopy heights between 2 and 6 m and the maximum heights mea-
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ured correlated well with the data obtained from other methods.
his study showed a potentially similar application to specialty tree
rop production. A helicopter-borne laser system was also imple-
ented to measure tree heights and stand volume (Nilsson, 1996).

hey recommended the combination of airborne Lidar and satel-
ite imagery could be very useful for describing biodiversity and

onitoring its changes.
With the advancement of technologies, a newly developed sens-

ng system was applied to specialty crops. Wei and Salyani (2004)
pplied a laser scanning system (AccuRange AR4000–LIR, Acuity
esearch Inc., Menlo Park, Cal.) to measure citrus tree height, width,
nd canopy volume. They tested the system to determine its res-
lution and accuracy and reported that the system showed good
epeatability with measurement errors less than 5%. This type of
anopy characteristics study is important in the development of
ree specific or site specific management practices. Further, Wei
nd Salyani (2005) implemented a laser scanning system to mea-
ure the foliage density of a citrus canopy. When compared with
anually collected data, the results showed an overall correlation

f R2 = 0.96 with an RMSE = 6.1%. The laser measurements showed
good repeatability with an average coefficient of variation (CV) of

ess than 3%. More recently, Ehlert et al. (2008) also utilized a laser
ystem and implemented a laser rangefinder technology to esti-
ate site-specific crop parameters such as plant height, coverage

nd biomass density which could be a major factor in optimiz-
ng crop harvesting methods. The results showed a correlation of
.93–0.99 for oilseed rape, winter rye and winter wheat between
he crop biomass density and the mean height of the laser reflection
oint.

.2. Ultrasonic sensing

Another technique used to measure crop canopy is ultrasonic
ensing. Ultrasonic sensors were used in crop production start-
ng the late 1980s. Giles et al. (1988) used commercial ultrasonic
ange transducers to measure tree canopy volume. The system
as mounted and tested with an air blast sprayer and the results

howed an error rate of less than 2% on calibration targets and an
verage error of 10% for apple and peach orchards applications.
hey reported that the results could be used as a means of sprayer
ontrol in the future. Then, Giles et al. (1989) investigated spray
olume savings using an ultrasonic measurement which ranged
etween 28 and 52%, and varied greatly depending on target crop
tructure. Moltó et al. (2001) also investigated the possibility of sav-
ng the chemicals by measuring the distance between the sprayer
nd tree canopy using ultrasonic sensors and reported savings of
praying products up to 37%. Other similar studies also reported
hemical saving in spraying operations. Solanelles et al. (2006)
ested a prototype sprayer with an electronic control system con-
aining ultrasonic sensors in olive, pear and apple orchards, and
eported 28–70% spray product savings when comparing spray
eposits to a conventional application. Gil et al. (2007) also reported
n average of 58% less liquid applied using ultrasonic sensors when
omparing a uniform application rate with variable rate of a sprayer
ased on vineyard structure variations.

Other groups of researchers conducted studies in different
spects of ultrasonic sensor application. Tumbo et al. (2002)
eported comparison between a laser scanner and ultrasonic trans-
ucers in measuring canopy volume of citrus trees. When compared
ith manual measurements, ultrasonic measurements yielded an

2 of 0.90 with an RMSE of 1.7 m3, while laser measurements

ielded an R2 of 0.95 with an RMSE of 1.9 m3. The laser sensor
ystem performed slightly better since it had a higher resolu-
ion. Zaman and Salyani (2004) investigated the effect of travel
peed on ultrasonic measurement of citrus tree canopy by a
urand–Wayland ultrasonic system. For dense foliage, the travel
ics in Agriculture 74 (2010) 2–33 13

speed did not affect much to canopy measurement, yielding stan-
dard errors of 1.0–1.1% compared to manual measurements, while
light foliage measurements were affected more by the travel speed
with 1.5–3.0% standard error in canopy volume measurement. They
reported that the opening in the canopy and light density of foliage
might reduce the ultrasonic signal to result in poor performance
in light foliage measurements. However, the ground speed did not
produce any significant effect on canopy volume measurements.
Schumann and Zaman (2005) developed a real-time software sys-
tem to map citrus tree canopy volume and height using ultrasonic
sensors and a DGPS receiver. The system continuously monitored
the ultrasonic sensors and the DGPS receiver, and measured the tree
size and canopy volume. They reported high accuracies between
manual and the automated measurements with R2 values of 0.94
for tree height and canopy volume. Balsari et al. (2002) developed
a prototype sprayer which could measure target size and density of
apple trees using ultrasonic sensors and found that travel speed did
not significantly affect the vegetation measurement using the sen-
sor, and suggested that an average of at least 10 measurements in
every meter of travel distance would be needed for proper adjust-
ment of the sprayer.

6.3. Light penetration of the canopy

Another method used to determine the foliage density of trees
was the light penetration of the canopy (Jahn, 1979). Past studies
showed that the light penetration was a non linear measurement
of the leaf density. Jahn (1979) used the radiation measurement as
a means of estimating canopy density. The trees under study were
defoliated at different levels to obtain their radiation penetration.
The tree size was used to determine the leaf area index (LAI) and
the leaf area to canopy area ratios (LAC). Results showed that the
penetration of photo synthetically active radiation (PAR) increased
in a curvilinear fashion as defoliation increased and LAC decreased.

6.4. Other crop biomass sensing methods

Besides laser scanner and ultrasonic sensors, satellite imagery
or synthetic aperture radar (SAR) satellites were also used for crop
biomass sensing. Todd et al. (1998) estimated biomass of range-
lands using spectral indices from the LANDSAT TM imageries. This
method studied the use of green vegetation index (GVI), brightness
index (BI), and wetness index (WI), the normalized difference veg-
etation index (NDVI) and the red waveband (RED) in the estimation
of biomass content of ungrazed and grazed grasslands. The results
showed the close correlation of the GVI, NDVI, WI and RED indices
to the biomass from grazed sites, however found no significant
relation in the data from ungrazed sites. Lu (2006) reviewed arti-
cles for remote sensing-based biomass estimation for forests sites
and reported that the task would be challenging due to complex
forest stand structure and environmental conditions. Lu pointed
out that the following factors were important for successful mea-
surement: accurate atmospheric calibration, selection of suitable
vegetation index, integration of optical and radar data, integration
of multi-source data, and reduction of the mixed pixel problem.
Holmes et al. (2005) described the use of SAR satellites on estimat-
ing biomass and LAI, and reported strong relationships between the
SAR backscatter and crop parameters (biomass and LAI).

6.4.1. Application of canopy measurements
One of the ultimate goals of estimating canopy volume is site-
specific variable rate application of fertilizer and pesticides. Zaman
et al. (2005) generated a prescription map for variable nitrogen
application to citrus trees from the measurements of tree sizes
by the ultrasonic system, and reported that 38–40% of granular
fertilizers were saved when variable nitrogen applications were
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mplemented on a single-tree basis. As described previously, other
esearchers also reported savings in chemical application based on
anopy volume measurements (Giles et al., 1989; Moltó et al., 2001;
olanelles et al., 2006; Gil et al., 2007). Further, Zaman et al. (2006)
apped a citrus grove with an automated ultrasonic system and a

ensor-based automatic yield monitoring system. They found that
ltrasonically-sensed tree sizes were linearly correlated with fruit
ield (R2 = 0.80).

. Soil nutrients and other soil characteristics

For soil nutrients and other characteristics, many different sens-
ng methods have been studied and implemented including NIR and

IR spectroscopy, spectral library, electrodes, thermal imaging,
aman spectroscopy, fluorescence, and microwave. These methods
re individually described below.

.1. Visible (VIS)/NIR spectroscopy

Advances in spectroscopy have provided new methods to deter-
ine concentration of elements in chemistry. One of the most

ommon methods is ultraviolet (UV), VIS and NIR reflectance spec-
roscopy. It has advantages in determining soil properties rapidly
nd non-destructively. A lot of research has been conducted on this
opic at different locations around the world. The application of NIR
eflectance spectroscopy (NIRS) to soil property sensing was ini-
iated in the 1960s, made advances in the 1970s and 1980s, and
loomed in the 1990s. Starting in late 1990s and 2000s, real-time
ensing systems were developed and some commercial systems
ecame available for crop production.

One of the soil properties that were first investigated was
oil organic matter (SOM) content since it is an important prop-
rty when soil fertility is considered for crop production. Bowers
nd Hanks (1965) investigated the effect of organic matter on
eflectance measurements and reported that reflectance decreased
s moisture content increased, and that soil moisture determina-
ion might be possible by measuring reflectance. Other researchers
nvestigated the infrared spectra of inorganic compounds (Nyquist
nd Kagel, 1971), identified wavelengths (0.624 and 0.564 �m) for
redicting percent organic matter content (Kirshnan et al., 1980),
tudied the characterization of organic matter in particle-size frac-
ions (Ristori et al., 1992), utilized an NIR soil sensor to predict
oil moisture and organic matter content (Hummel et al., 2001),
mplemented radial basis function networks (RBFN) for soil organic

atter detection (Fidêncio et al., 2002), and the effect of soil mois-
ure and vegetation cover on the prediction of organic matter and
lay content (Kooistra et al., 2003). Soil organic carbon (SOC) con-
ent is also an important constituent in SOM. Several different

ethods have been used for determining SOC, which include linear
egression models (Ingleby and Crowe, 2000), the effect of particle
ize (Cozzolino and Moroı̌n, 2006), NIR and fluorescence techniques
Rinnan and Rinnan, 2007), PLS regression (Vasques et al., 2008),
nd spectral indices (Bartholomeus et al., 2008). Along with these
tudies, soil mineral-N was also studied. Ehsani et al. (1999) inves-
igated soil NIR reflectance to determine soil mineral-N content
n 1100–2500 nm. PLS and principal component regression (PCR)

ere used to develop calibration models. They reported that the
odels were quite robust, however if some other interfering fac-

ors were not included in the model development, the calibration
odels failed, suggesting site-specific calibration would be neces-
ary.
Another important soil property is moisture content. Since there

re several very well known water absorption bands (for example,
60, 1410, 1460, and 1910 nm), NIR spectroscopy would be suitable
o determine water content. Kano et al. (1985) designed and tested a
cs in Agriculture 74 (2010) 2–33

soil moisture meter using NIR reflectance at 1800 and 1940 nm and
reported that a standard error of ±1.9% moisture units. Dalal and
Henry (1986) investigated simultaneous prediction of soil mois-
ture, organic C, total N content of dry soils using NIR reflectance
in 1100–2500 nm. Using multiple regression, they selected impor-
tant wavelengths for the different soil properties. Slaughter et al.
(2001) studied the feasibility of utilizing a global NIR calibration
equation to determine soil moisture content and reported that NIR
absorbance data was well correlated with soil moisture content
when the calibration set contained the same soil type and particle
size as the unknown samples, however the model did not work well
when unknown samples had different soil particle size. Kaleita et al.
(2005) reported an exponential model was suitable to estimate soil
moisture from reflectance data. Mouazen et al. (2006) described the
impact of soil water content on the accuracy of VIS and NIR spec-
troscopy on the estimation of other soil characteristics. The results
showed a 95.6% correct classification of water content levels for
the validation data sets using three water content classifiers on soil
with limited texture and color variation.

As people became more concerned about the contamination
from excessive agricultural chemicals, phosphorus (P) became one
of the most concerning nutrient elements. Yoon et al. (1993) inves-
tigated an on-line phosphate sensing using optical measurement,
ultraviolet photoluminescence and laser-Raman spectroscopy for
P mining industry. They reported that approximately 20–30%
error was produced for optical measurement, and significant
data scatter was problematic due to small size of the incident
light beam. Bogrekci et al. (2003) studied the wet and dry soil
reflectance for determining P concentrations. Further, Bogrekci and
Lee (2005a,b,c,d) conducted a series of research toward the devel-
opment of a portable P sensing system, which include the feasibility
of NIR to determine soil and grass P concentrations (Bogrekci and
Lee, 2005a), the effects of soil particle size on the reflectance
(Bogrekci and Lee, 2005b), spectral signatures of soils (Bogrekci and
Lee, 2005c), examination of spectral characteristics of four common
soil phosphates (Al, Fe, Ca, and Mg phosphates) in Florida (Bogrekci
and Lee, 2005d), and the effect of soil moisture content on sensing
P concentrations Bogrekci and Lee (2006a). Maleki et al. (2006) also
measured reflectance of fresh soils in 300–1700 nm and developed
P prediction models with R2 values of 0.63–0.75. Further, Maleki
et al. (2007) tested the previously developed portable VIS-NIR P
sensor for variable rate application of elemental P, and reported
that different averaging windows needed to be used to minimize
the fluctuation of application rates since there was no variable
rate (VR) equipment that could respond rapid fluctuations. Then,
real-time application of phosphate (P2O5) was implemented dur-
ing maize planting using an on-the-go visible and NIR soil sensor
for extractable phosphorus in 305–1171 nm (Maleki et al., 2008).
A comparison was made for crop yield and the number of plant
leaves between VR and uniform rate (UR) plots, and they reported
that no significant difference was found between the number of
plant leaves in VR and UR plots. However, the yield was significantly
higher in VR plots than in UR plots. Mouazen et al. (2007) compared
on-line sensor measurement of different soil properties (P, C, pH,
and moisture content) with those made under non-mobile labo-
ratory conditions, and reported that similar results were obtained
which suggests the possibility of real-time soil property sensing.
Bogrekci and Lee (2007) compared the three different electromag-
netic regions (UV, VIS, and NIR) to determine optimal region for
detecting soil P, and reported that the NIR region yielded the best
results based on PLS analysis results.
Additionally Raman spectroscopy was used for measuring soil
P contents. Bogrekci and Lee (2005e) developed a portable Raman
sensor for detecting P content in soil and vegetation using a 785 nm
laser probe assembly and a detector array in 340–3460 cm−1. They
reported an R2 of 0.98 and the lowest root mean square error
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RMSE) of 151 mg/kg for P predictions using PLS analysis. Further,
ogrekci and Lee (2006b) studied the effect of soil particle size on
aman spectra of soils and reported that soil particle size had an
ffect on Raman spectrum of soils and that the predictions using
LS showed higher coefficient of determinations when the same
article size of samples were measured than different particle size
f samples were used.

Some researchers studied soil particle size along with NIRS
pplication, such as investigation of the variation of diagnostic fea-
ures with soil particle size and packing density (Arnold, 1991),
rediction of soil texture (Zhang et al., 1992), and estimation of soil
article size by remote sensing (Salisbury and D’Aria, 1992).

Along with all the research, there were many groups of
esearchers who developed soil sensing systems. Shonk et al.
1991) developed a prototype soil organic matter sensor using
ed LEDs (660 nm) as a light source. They reported that the R2

etween actual and sensor-measured organic matter contents were
.85–0.96 in a laboratory test, and that soils with organic mat-
er content more than 6% would be difficult to estimate based
n their test results. Sudduth and Hummel (1993a) developed a
ortable spectrophotometer to measure soil properties, then tested

t in a laboratory and a field (Sudduth and Hummel, 1993b), and
orrelated NIR reflectance spectra with soil organic matter, CEC,
nd moisture content. They reported that in-furrow tests did not
rovide accurate estimates due to the movement of the sensor
uring wavelength scanning. Then, Sudduth and Hummel (1996)
ested the previously developed NIR soil sensor with soil sam-
les obtained various regions and reported that the calibrations
ecame less accurate due to the extended geographic range of the
amples. Shibusawa et al. (1999) developed a portable spectropho-
ometer for measuring underground soil reflectance in real-time
n 400–1700 nm. They reported that R2 values of 0.19 to 0.87
etween reflectance spectra and different soil properties (mois-
ure, pH, EC, SOM, NO3-N). Then, Shibusawa et al. (2001) revised
he soil spectrophotometer to collect soil reflectance data in a
addy field and predict soil moisture, SOM content, NO3-N con-
ent, pH, and EC, and reported the R2 values of 0.54–0.66 for the
alidation samples. Mouazen et al. (2005a) developed a portable
IR spectrophotometer in 306–1711 nm to measure soil moisture
ontent during field operation. They reported a validation correla-
ion of 0.978 between the actual and predicted moisture content.
urther, Mouazen et al. (2005b) used the previously developed
ortable spectrophotometer to classify soil texture using factorial
iscriminant analysis, and reported 82% correct classification on
he validation set. Christy (2008) built a shank-based spectropho-
ometer for real-time soil property sensing and reported that the
est prediction was achieved for SOM content with R2 of 0.67.
he final purpose for sensing soil properties would be to develop
real-time in-situ sensing system. However, as Ge et al. (2006)

ointed out, there would be many reasons that a real-time sensing
ystem would not be possible due to great variabilities of soil prop-
rties. They reviewed different soil properties that were previously
tudied with different sensing platforms and data analysis tech-
iques. There were also numerous groups who studied multiple
oil properties using NIRS. Those properties include clay content,
pecific surface area, cation-exchange capacity, hygroscopic mois-
ure, carbonate content, and organic matter content with R2 values
f 0.55–0.70 for validation (Ben-Dor and Banin, 1995); clay, car-
on, and nitrogen contents with validation RMSE values of 2.9%,
.06%, and 0.007%, respectively (Walvoort and McBratney, 2001);
, P, Ca, Mg, Na, Zn, clay, sand, and pH with R2 values of 0.05–0.68
or prediction (Thomasson et al., 2001); 33 chemical, physical,
nd biochemical properties with R2 values of 0.00–0.89 for pre-
iction (Chang et al., 2001); total N, organic C, active N, biomass
nd mineralisable N and pH with R2 values of 0.80–0.96 for val-
dation (Reeves and McCarty, 2001)); exchangeable Ca, effective
ics in Agriculture 74 (2010) 2–33 15

cation-exchange capacity (ECEC), exchangeable Mg, organic C, clay
content, sand content, and pH with R2 values of 0.67–0.88 for val-
idation (Shepherd and Walsh, 2002); CEC, exchangeable Ca and
Mg, pH and Ca:Mg ratio, organic carbon, and exchangeable sodium
percentage with R2 values of 0.18–0.90 for validation (Dunn et al.,
2002); organic C, inorganic C, and total N with R2 values of 0.85–0.96
for prediction (Chang and Laird (2002); pH, SOM, P, K, Ca, and Mg
with R2 values of 0.24–0.88 for validation (Lee et al., 2003); Ca, K,
Mg, Na, P, Zn, clay, and sand with wavelet analysis with R2 values
of 0.16–0.69 for prediction (Ge and Thomasson, 2006); and clay,
soil organic C, inorganic C, dithionate–citrate extractable Fe, cation
exchange capacity (CEC), relative kaolinite content, and relative
montmorillonite content with R2 values of 0.73–0.91 for prediction
(Brown et al., 2006).

There were groups of researchers who focused on utilizing spec-
tral information in the MIR region (2500–50,000 nm). Ehsani et
al. (2001) investigated soil diffuse reflectance in the MIR range to
determine soil nitrate content using a Fourier Transform Infrared
(FTIR) spectrophotometer. They identified a strong nitrate absorp-
tion peak at 7194 nm and estimated the concentration with R2

values of 0.86–0.88. Merry and Janik (2001) demonstrated that
MIR spectroscopy could rapidly analyze and predict soil proper-
ties (carbonate and organic carbon, total nitrogen, cation exchange
capacity, some exchangeable cations, electrical conductivity, pH,
soil texture, and a number of other properties) very well. McCarty
et al. (2002) compared NIR (40–2500 nm) and MIR spectroscopy
in detecting soil C (total, organic, and inorganic). They reported
that MIR analysis outperformed NIR, suggesting high quality infor-
mation available in MIR region. Linker et al. (2004) investigated
direct estimation of soil nitrate content using Fourier transform
infrared (FTIR) attenuated total reflectance (ATR) spectroscopy
in MIR region and reported best root mean square prediction
errors of 38–43 ppm-N based on different prediction methods.
Jahn et al. (2005) applied wavelet analysis to soil FTIR ATR spec-
tral data to estimate soil nitrate concentration, and reported that
wavelet analysis was successful in predicting nitrate content with
6–10 ppm NO3-N standard errors for pooled data. Further Jahn et
al. (2006) developed short-time Fourier transform (STFT) with soil
FTIR ATR spectral data to minimize interferences from other ions
and was able to reduce standard errors as low as 4 ppm NO3-N.
Viscarra Rossel et al. (2006) compared the performance of different
wavelength ranges (VIS, NIR, and MIR) with the combined range.
Prediction accuracy varied greatly depending on soil property.

Overall, VIS/NIR spectroscopy showed great potential in sens-
ing different soil properties, and reached its blooming stage where
real-time commercial detection systems have already been devel-
oped or is being currently developed for various operations in crop
production.

7.2. Soil sensing using airborne and satellite imaging

There have been numerous studies using airborne and satel-
lite imageries to detect different soil properties on a larger scale.
In mid 1980s, Baumgardner et al. (1985) described applications of
soil reflectance measurements for airborne and satellite based soil
detection. Interestingly, they listed GIS as georeferenced informa-
tion system (not “geographic information system”), which would
be an emerging technology for soil data inventory and monitoring.
Different satellite imageries were used for soil sensing such as SPOT
(Agbu et al., 1990), and Landsat TM (Coleman et al., 1993). The anal-
ysis from SPOT imagery resulted in low correlation coefficients of

less than 0.35 between different spectral bands and soil properties.
Landsat TM images used by Coleman et al. (1993) yielded an over-
all 97% accuracy in differentiating the surface soils. They reported
possible sources of error that contributed to the performance were
atmospheric particles such as moisture, CO2, dust, etc. However,
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olor infrared digital orthophoto quadrangle (CIR-DOQ) imageries
sed yielded an overall accuracy of 63% in differentiating surface
oils (Coleman and Tadesse, 1995). Njoku et al. (2003) described
oil moisture retrieval approach and its implementation from the
dvanced Microwave Scanning Radiometer (AMSR-E) on the Earth
bserving System (EOS) Aqua satellite, launched in 2002.

Another application of the satellite imagery is the soil line, which
s a linear relationship between bare soil reflectance observed in
wo different wavelengths. Galvao and Vitorello (1998) investi-
ated the soil lines between conventional red and NIR bands for
he influence of the chemical constituent and moisture in soil sam-
les. Fox and Sabbagh (2002) also utilized the soil lines of bare soil

mages to map soil organic matter and provide guidance for soil
ampling.

Aerial images were used for detecting soil P and organic matter
Varvel et al., 1999) and soil moisture (Muller and Decamps, 2000).
arnes and Baker (2002) used both multispectral airborne and
atellite images to develop soil textural class maps. They observed
hat differences in field properties lowered the accuracy of spectral
lassification results; however reasonable accuracy was obtained
hen a field-by-field spectral classification was conducted. Further,
arnes et al. (2003) described remotely sensed data and ground-
ased sensing data for soil properties (soil organic matter, electrical
onductivity, compaction, and nitrate level) and corresponding
hallenges for different sensing methods. They emphasized that
he integration of multispectral imagery and ground-based sensor
ata could yield more accurate soil maps. Ben-Dor (2002) provided
detailed description on detecting soil properties using remote

ensing, and described principles of quantitative remote sensing
f soils, mechanisms of the soil-radiation interactions, potential
roblems, factors affecting remote sensing, and high spectral reso-

ution (HSR) sensors. He emphasized that “sophisticated analytical
ethod and a synergy between physical and empirical models”
ould be very important in retrieving soil property information

rom airborne reflectance measurements. He pointed out that near
nfrared reflectance analysis would be a very promising technology
n detecting soil properties using remote sensing. Metternichta and
inck (2003) reviewed techniques for sensing soil salinity using
erial photographs, satellite- and airborne multispectral sensors,
icrowave sensors, video imagery, airborne geophysics, hyper-

pectral sensors, and electromagnetic induction meters. They also
iscussed different feature recognition and mapping techniques

ncluding spectral unmixing, maximum likelihood classification,
uzzy classification, band ratioing, principal components analysis
nd correlation analysis.

.3. Soil compaction

Soil compaction, as discussed by Hamza and Anderson (2005),
auses many problems in crop production, including decreased
ater storage and supply, decreased soil physical fertility, reduced
lant growth, reduced nutrient mineralization, reduced activities
f micro-organisms, decreased crop yield, and increased wear and
ear on cultivation machinery. Thus, soil compaction sensing is an
mportant aspect of precision farming of specialty crops.

As an earlier study for soil compaction, Soehne (1958) stud-
ed pressure distribution in the soil under tractor tires with
emi-empirical formulas developed by Froehlich (1934) using soil
oncentration factor, and explained the principles of static and
neading soil compaction. Freitag et al. (1970) studied the soil
haracteristics which are related to soil-machine problems using

he concept of similar systems (i.e., a prototype and a model),
escribed capabilities for carrying out useful similitude studies
uch as predicting response of a specific prototype and developing
eneral soil-machine relations for special soil conditions, and pre-
ented future research directions in soil-machine systems. Wismer
cs in Agriculture 74 (2010) 2–33

and Luth (1972) have developed useful equations that related tire
characteristics and soil conditions to tractive performance such as
wheel towed force, torque, and pull using soil strength, wheel load,
slip, and tire size. They reported that these equations represented
a major portion of soil-wheel interaction, and recommended these
for computer simulation and “hand” analysis of off-road vehicles.
Pitts (1980) investigated various models to predict the change in
soil strength due to wheel traffic using soil cone index as an overall
measure of soil strength, and identified that initial soil cone index,
velocity of a vehicle, normal load, slip, and wheel width to diameter
ratio were potential parameters that could affect the change in soil
cone index.

To determine soil cutting resistance with depth, Glancey et al.
(1989) designed and tested an instrumented chisel to study force
distribution and soil fracture mechanics, and reported that the
device was able to estimate soil cutting force distribution over
tillage depth and to detect soil fracture modes. Starting in early
2000s, there have been considerable efforts on developing sensing
systems for soil compaction. Adamchuk et al. (2001) designed a ver-
tical smooth blade to measure the mechanical impedance of soil at
multiple depths and to estimate resistance pressure. In laboratory
tests, a close relationship (R2 = 0.99) between measured and calcu-
lated strain was found and in field experiments an R2 of 0.95 was
obtained between the estimated vertical smooth blade resistance
and cone penetrometer resistance. Chung et al. (2003) developed
an on-the-go soil strength profile sensor using load cells. Then,
Chung et al. (2004) evaluated the sensor and reported R2 values of
0.61 and 0.52 to estimate prismatic soil strength index for a clay-
pan soil field and a floodplain soil field, respectively. Adamchuk et
al. (2004a) provided a review of different sensing technologies for
soil mechanical, physical and chemical properties using electrical
and electromagnetic, optical and radiometric, mechanical, acous-
tic, pneumatic, and electrochemical measurement methods. They
reported that among these, only electric and electromagnetic sen-
sors have been mostly used and that the commercial sensors need
to provide direct inputs to existing prescription algorithms. They
described that the soil maps obtained by the sensors should also
have an economic value. Adamchuk et al. (2004b) developed a pro-
totype instrumentation system for variable-depth tillage using load
cells and strain gauges. Models for linear pressure distribution were
used to compare its performance with a standard cone penetrom-
eter measurement. Andrade et al. (2004) evaluated an improved
version of a soil compaction sensor and tested it in two commer-
cial fields. They compared the sensor measurement with cone index
data and reported correlation coefficients of 0.23–0.70 at different
locations and depths. Mouazen and Ramon (2006) developed an on-
line system for measuring soil draught, cutting depth, and moisture
content, and discussed the relationship among them. Adamchuk
and Christenson (2007) developed an instrumented blade to map
soil mechanical resistance as a second-order polynomial with an
array of four strain gages. Andrade-Sanchez et al. (2007) developed
and evaluated a soil compaction profile sensor and reported that
the soil cutting force was influenced by soil bulk density, moisture
content, and the location of the cutting element within the soil
profile, and that the sensor measurements agreed with the cone
index profile with an R2 of 0.977. Andrade-Sanchez and Upadhyaya
(2007) reported the development of the UC Davis soil compaction
profile sensor and a relationship between its measurements and
reference values obtained with a standard cone penetrometer. Fur-
ther Andrade-Sanchez et al. (2008) made significant changes in the
sensor geometry over the previously developed soil compaction

profile sensor and evaluated it in commercial fields. They reported
that the device was able to produce soil cutting resistance variabil-
ity map. Chung et al. (2006) developed a soil strength profile sensor
(SSPS) using load cells and reported that the optimum extension
and spacing of the cutting tips were 5.1 and 10 cm, respectively.
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lso they reported that the sensor measurements had a linear rela-
ionship with the penetrometer cone index with a slope of about
.6. Sudduth et al. (2008) compared the two previously developed
n-the-go soil compaction sensors (soil compaction profile sen-
or and soil strength profile sensor) in field testing. They reported
hat the soil compaction measured by the two sensors in MPa
as similarly affected by soil strength variations in the testing

ites, and that soil compaction maps generated by the two sen-
ors showed similar patterns with more spatial details than cone
ndex maps alone. Hemmat and Adamchuk (2008) reviewed pre-
ious research on different sensors for soil strength, profile, fluid
ermeability, and water content. They suggested that the fusion
f different sensors would be the next step in mapping spatially
ariable soil physical properties. Tekin et al. (2008) developed a
oil penetrometer that can generate 2D/3D soil compaction maps,
ested in field conditions, and reported that the developed system
ould be used to determine soil compaction distribution at differ-
nt depths. Mouazen and Ramon (2009) described modification of
n on-line soil compaction prediction model and reported that soil
ompaction for the selected textures can be measured on-line using
he bulk density model, and that the correction factor along with
he bulk density model can be used for on-line soil compaction

easurement.

.4. Electrodes

A relatively newer method for sensing soil properties is based
n the use of electrodes. In an earlier study, Adsett and Zoerb
1991) explored the feasibility of measuring soil nitrate levels
sing a nitrate-selective electrode and reported that ion-selective
lectrode technology could be adopted to automatically monitor
n-field soil nitrate content. However, the calibration procedure

ay be unsuccessful when the electrodes or the operating envi-
onment is not in an equilibrium state. Adsett et al. (1999) further
eveloped an automated soil nitrate monitoring system consist-

ng of a soil sampler, a soil metering and conveying unit, a nitrate
xtraction unit, and an electronic control unit. They reported that
he system was successfully tested in a laboratory, however more
ork would be needed for in-field use since some mechanical and

lectrical problems were found including clogging of the extrac-
or outlet. Adamchuk et al. (1999) started utilizing electrodes in
ensing different soil properties extensively. They developed an on-
he-go soil pH sensing system using an electrode and reported an
2 of 0.83 and standard error of prediction of 0.45 pH in field test-

ng. Birrell and Hummel (2000) utilized PVC matrix ion-selective
embranes that are compatible with ion-selective field effect tran-

istors (ISFETs) to measure soil nitrate contents, demonstrated their
ensitivity and selectivity, and reported that the ISFETs could be
sed to develop a real-time in-field sensor system. Birrell and
ummel (2001) then tested a multi-ISFET sensor and found that

he sensor was able to successfully measure soil nitrate content
n solutions manually extracted with a proper calibration solu-
ion, however was not successful for an automated soil solution
xtraction system. Brouder et al. (2003) developed a rapid and
nexpensive ion selective potassium electrode, evaluated its perfor-

ance, and investigated its sensitivity to environmental variables.
damchuk et al. (2006) tested the soil pH measurement system

n artificially created areas and reported a standard error of 0.38
H. Kim et al. (2006) evaluated nitrate and potassium ion-selective
embranes and investigated their effect on soil extractants. They

eported that the membranes showed linear response with nitrate

nd potassium concentrations, however, their sensitivity decreased
t lower concentrations (less than 10–4 mole/L). Then, Kim et al.
2007a) studied different ion-selective electrodes (ISE) for sens-
ng phosphate and found that cobalt rod-based electrodes showed
ensitive response over a typical phosphorus concentration range
ics in Agriculture 74 (2010) 2–33 17

in agricultural fields. Kim et al. (2007b) further expanded the appli-
cations of ISE to simultaneous measurement of soil macronutrients
(N, P, and K). They reported that the NO3 ISEs yielded similar
results to those from standard laboratory tests (R2 = 0.89), how-
ever K and P ISEs estimated 50% and 64% lower concentrations than
the standard laboratory analysis, respectively. Sethuramasamyraja
et al. (2007) expanded the ion-selective sensing system to map
simultaneously soil pH, residual nitrate (NO3

−), and soluble potas-
sium (K+) contents. They reported that besides the soil type, the
soil/water ratio affected sensor performance the most. Adamchuk
et al. (2007) compared soil pH maps created by the on-the-go sens-
ing system with the results from grid sampling, and reported that
field-specific calibration would be needed to increase accuracy.
Sethuramasamyraja et al. (2008) evaluated an Agitated Soil Mea-
surement (ASM) method for soil pH, soluble potassium and residual
nitrate contents using ion-selective electrodes and an integrated
Agitation Chamber Module. They reported that calibration param-
eters for pH and K electrodes were stable, however those for nitrate
drifted significantly. The test results showed the potential for on-
the-go soil property mapping even though improvement would be
needed. Currently some commercial electrodes are available for
measuring soil properties such as moisture, pH, nitrate, potassium,
bromide, and chloride by London-Phoenix Company, Cole-Parmer,
and Zhejiang Top Instrument Co. Ltd.

7.5. Microwave technique

There are two different methods in microwave soil moisture
sensing: passive and active. Passive microwave was also used to
detect soil properties, particularly soil moisture. Schmugge (1978)
presented different remote sensing methods of the moisture con-
tent in the soil surface by using the thermal and dielectric properties
of water, and presented three different methods to detect soil
moisture: thermal IR approach, passive microwave sensing and
active microwave sensing. Later, Jackson and Schmugge (1989)
reviewed soil moisture sensing methods using passive microwave
and presented potential applications. They concluded that the
future remote sensing of global soil moisture would depend on
the final configuration of the Earth Observation System (EOS).
Njoku and Entekhabi (1996) discussed basic principles of passive
microwave remote sensing of soil moisture. It was found that the
emission of thermal microwave radiation from soil was highly cor-
related with soil moisture content. Microwave methods also had
the added advantage of being unaffected by cloud cover and highly
accurate in the case of barren soil or soil with low vegetation cover.
They mentioned that incorporation of passive microwave data into
hydrologic models would be promising. Vinnikov et al. (1999) used
a scanning multichannel microwave radiometer (SMMR) for esti-
mating soil moisture content over large regions. The results showed
that the polarization differences as well as the microwave emissiv-
ity were highly correlated with soil moisture information in regions
with sparse or no vegetation. The system was very useful as it elim-
inated the need for the expensive direct moisture measurement
methods used.

Guha et al. (2003) implemented passive microwave mea-
surements at 1.4 GHz using an electronically scanned thin array
radiometer to measure soil moisture and reported a good agree-
ment between measured and predicted soil moisture content. Tien
and Judge (2006) discussed the effect of changing soil tempera-
ture and moisture on measured brightness temperatures over a
growing season of cotton, and reported that the measured and

predicted sensitivities of the brightness temperature (TB) to the
changes in soil moisture at 4 cm in the early growing season corre-
sponded well to each other. Tien et al. (2007) investigated different
calibration techniques for ground-based C-band radiometers by
comparing the measured TB with the estimated, and reported
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Table 2
Comparison of different microwave sensing techniques for soil moisture content.

Method Advantages Disadvantages/challenges Common features

Active Better spatial resolution than passive Need a radar as a microwave source Very sensitive to soil water content in the top few
centimeters

Availability of measurement Very sensitive to the roughness of soil surface and
geometry and structure of vegetation, which
makes soil water content estimation difficult

Independent of solar radiation, clouds, and light
rain, and not affected by atmospheric conditions

Poor temporal resolution Measure radiation quantities that are functions of
the soil’s index of refraction

Seasonal variation in relationships between
microwave remote sensing and soil water content
needs further investigations

Lack of combined active/passive observations at
various spatio-temporal scales

Passive No signal source is required Poor spatial resolution

Better temporal resolution
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More widely used than active sensing, since it
is less sensitive to roughness of soil surface and
geometry and structure of vegetation

he mean absolute temperature error of 2–4 K. Judge (2007) pro-
ided a brief review of measuring soil moisture using microwave
emote sensing, which utilizes the difference in the refractive
ndices of soil and water. Measuring near surface soil moisture
ontent can be done through semi-empirical models, a microwave
odel with a hydrologic or crop model, and combined use of pas-

ive and active observations through various techniques, however
ome major technical challenges exist such as lack of satellite-
orne radiometers operating at wavelengths near 20 cm, and
easonal variations in relationships between microwave remote
ensing and soil water. Table 2 summarizes the differences and
ommon features of active and passive microwave soil moisture
ensing.

. Foliar disease detection

.1. Why should foliar diseases be detectable?

There are strong indicators that plant diseases are automatically
etectable. The detection information carriers considered in this
aper are electromagnetic waves. The hypothesis is that healthy
lants interact (absorb, reflect, emit, transmit and fluoresce) with
lectromagnetic radiation differently than infected plants.

Plants show different optical properties. Some of them can be
een by the naked eye, others are obvious using advanced equip-
ent. Light measurement techniques are very helpful for detecting

hese properties.
Disease detection based on spectral reflection informa-

ion relies on the properties of the light emerging from the
anopy after multiple interactions, i.e., reflections, transmis-
ions, and absorptions, with the tissues of the plant. This
iffusely reflected radiation forms the canopy spectral signa-
ure, a function described by the ratio of the intensity of
eflected light to the illuminated light for each wavelength in
isible (VIS = 400–700 nm), near-infrared (NIR = 700–1200 nm) and
hortwave infrared (SWIR = 1200–2400 nm) spectral regions. Leaf
eflectance is defined as the proportion of the irradiated light
eflected by the leaf. The interaction of electromagnetic radiation
ith plants varies with the wavelength of the radiation. Healthy
eaves typically exhibit:

Low reflectance at VIS wavelengths due to strong absorption by
photoactive pigments (chlorophylls, anthocyanins, carotenoids).
In Fig. 7, one can observe how visible irradiation is absorbed by
Fig. 7. Schematic illustration of reflectance and transmittance of radiation through
crop layers (horizontal numbered lines) in the visible and NIR regions respectively
(source: www.geo-informatie.nl/igi-new/literature/Ch07 IGI RS Spectr Sign.doc).

the canopy and very little radiation is released, especially from
the lower canopy layers.

– High reflectance in the NIR due to multiple scattering at the air-
cell interfaces in the leaf internal tissue.

– Low reflectance in wide wavebands of the SWIR due to absorption
by water, proteins and other carbon constituents (Jacquemoud
and Us, 2001; Wooley, 1971).

– Due to their high water content (emissivity between 0.97 and
0.99), healthy leaves behave much like “black bodies” and emit
radiation in the thermal infrared band (TIR ≈ 10 �m) according
to their temperature.

Alterations of the reflectance can be considered as an infer-
ence of a leaf compositional change. Diseases can affect the
optical properties of leaves at many wavelengths, thus disease
detection systems may be based on spectral measurements in
different wavebands or a combination of wavebands. Healthy
plants appear green since the green light band (ca. 550 nm) is
reflected relatively efficiently compared to blue, yellow and red
bands, which are absorbed by photoactive pigments. Diseased
plants usually exhibit discrete lesions on leaves, corresponding
to necrotic or chlorotic regions, which increase reflectance in the
VIS range, especially in the chlorophyll absorption bands. In par-

ticular, reflectance changes at wavelengths around 670 nm, cause
the red edge (the sharp transition in the reflectance spectrum
from low VIS reflectance to high NIR reflectance that generally
occurs around 730 nm) to shift to shorter wavelengths. Con-
versely, biomass reduction linked to senescence, reduces growth

http://www.geo-informatie.nl/igi-new/literature/Ch07_IGI_RS_Spectr_Sign.doc
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nd defoliation and decreases the canopy reflectance in the NIR
and.

Images, as obtained using regular cameras, are two-dimensional
lices representing scenery in one (monochromatic) or more (mul-
ispectral) spectral regions. Typically, RGB-images represent a red,
green and a blue waveband, similar to human vision. Images in
ther wavebands can be acquired as e.g., with a Color Infrared (CIR)
amera. It provides multispectral images with some true-color
ensitive wavebands, as well as a NIR waveband. Representa-
ion is possible using separate black-white images or false color
mages.

Thermography is a technique that acquires images of thermal
adiation (radiation between 3 and 100 �m). The object under
nvestigation emits a certain thermal radiation depending on the
emperature of this object and its emissivity. Plant temperature can
e estimated through the thermal radiation captured by a thermal
amera and the emissivity of the plants. This temperature is highly
orrelated with the stomatal conductance of the plants. When the
eaf stomata close during an illumination event, CO2 and H2O are
ot exchanged which causes a greenhouse effect in the leaf. Dur-

ng a high thermal radiation event (e.g., solar illumination, halogen
llumination, etc.), a global increase of the leaf temperature can
e expected. Plants under water stress are known to close their
tomata and therefore increase their temperature.

Finally a lot of information about the metabolic status of
he plant can be obtained by the artificial excitation of the
hotosystems of a plant and the observation of the relevant
esponses. The most relevant technique described here is fluores-
ence. Fluorescence is light emitted during absorption of radiation
f some shorter wavelength. The typically fluorescing part of
he plant is the chlorophyll complex. Irradiating the chloroplasts
ith blue or actinic light will result in some re-emission of the

bsorbed light by the chlorophyll. The proportion of re-emitted
ight compared to the irradiation is variable and depends on the
lant’s ability to metabolize the harvested light. In so-called dark-
dapted leaves, photosynthetic activity is quasi-zero. The plant
espires (gain energy ATP) through mitochondrial activity. When
uddenly bombarded with a very strong blue light beam, the
ight-Harvesting Complexes (HCL) of the chloroplasts becomes
ompletely saturated. At that moment the excited chlorophyll can-
ot release its excitation energy since the metabolic pathways for
hoto-assimilation have not yet been started. Therefore the plant
hlorophyll will need to discharge its excess excitation energy into
ower energy photons, which is observable as red emission. Clearly
his fluorescence depends upon the concentration of chlorophyll
nd is a first good indicator of the plant’s capacity to assimilate
ctinic light. Moreover, combining an actinic light source with brief
aturating blue pulses, it is possible to estimate the plant’s effi-
iency of photo-assimilation, Non-Photochemical Quenching (this
s a measure of the thermal dissipation of the excited energy) and
ther physiological plant parameters.

Any disease that causes sufficient plant stress to distort the
eflectance characteristics of crop foliage is a candidate for detec-
ion by means of remote sensing. As early as in the late 1920s,
aubenhaus et al. (1929) used an ordinary hand-held camera
quipped with panchromatic film to take photographs of cotton
elds infested by cotton root rot from an airplane. The black-and-
hite photographs were used to locate Phymatotrichum root rot

pots of various sizes and shapes within the fields. Nevertheless,
he stimulus for more recent development of aerial photography
or crop disease detection came after Colwell (1956) conducted a

umber of experiments to study spectral reflectance properties of
ealthy and stressed cereal crops and to determine the optimum
lm and filter combinations for detecting and identifying certain
ereal crop diseases such as black stem rust in wheat and oats and
ellow dwarf virus in oats. Since then, numerous studies have been
ics in Agriculture 74 (2010) 2–33 19

undertaken to link the spectral response of a particular disease to
its appearance on aerial photographs.

Myers (1983) reviewed studies on the use of aerial photogra-
phy for detecting potato late blight, clitocybe root rot of pecans,
bunch disease of pecans, phony disease of peaches, corn leaf blight,
bacterial blights and root rot in beans, and root rot in cotton and
alfalfa fields. Ryerson et al. (1997) reviewed more aerial photo-
graphic studies grouped by four major types of crop diseases:
airborne, seed-borne, insect-borne, and soil-borne. In addition to
the above diseases mentioned, they reported that aerial photog-
raphy has been successfully used to detect the following diseases:
yellow rust of wheat, stem canker in rape, leaf spot and rust of the
sugar-bearing crops of beet and cane, mold and dwarf-mosaic virus
in corn, virus yellows in sugar beet, barley yellow dwarf virus in
winter wheat, barley yellow mosaic virus, take-all in winter wheat,
docking disorder root infection in sugar crops. Johnson et al. (2003)
investigated the spatial and temporal dynamics of late blight from
color-infrared (CIR) aerial photographs of five commercial potato
fields and they concluded that aerial photography coupled with
spatial analysis was an effective technique to quantitatively assess
disease patterns in relatively large fields and was useful in quanti-
fying an intensification of aggregation during the epidemic process
on a large scale.

Although aerial photography has been the primary remote sens-
ing technique used for study of crop diseases, multispectral and
hyperspectral electronic imaging systems have also been used for
this purpose. Cook et al. (1999) demonstrated the potential of air-
borne CIR video imagery for detecting Phymatotrichum root rot
and the root-knot nematode in kenaf. Fletcher et al. (2001) used
airborne digital imagery for detecting Phytophthora foot rot infec-
tions in citrus trees. Apan et al. (2004) demonstrated that Hyperion
satellite hyperspectral imagery can be used to detect the orange
rust disease in sugarcane. Du et al. (2004) evaluated the potential
of airborne multispectral and hyperspectral imagery for detecting
citrus greasy spot. Zhang et al. (2005) used an airborne multispec-
tral imagery with four broad bands (blue, green, red and NIR) to map
late blight infestations in two tomato fields. Chen et al. (2007) used
Landsat multispectral imagery to successfully detect the severe
infestation of the take-all disease in wheat. Franke and Menz (2007)
evaluated high resolution QuickBird satellite multispectral imagery
and airborne HyMap hyperspectral imagery for detecting powdery
mildew and leaf rust in winter wheat and their results showed that
high classification accuracies were achieved when the infection was
severe at the late crop growth stages.

Airborne and spaceborne imagery has been successfully used to
detect and map a large number of crop diseases, but early detec-
tion remains difficult and in some cases impossible. In most cases,
by the time disease symptoms can be detected on the remote sens-
ing imagery, damage has already been done to the crop. For some
diseases, this may be early enough to take control measures in order
to minimize damage; for others, it may be too late to correct the
problem within the growing season. In fact, remote sensing imagery
has been primarily used to assess the extent and intensity of the
damage caused by disease. In this regard, remote sensing is a very
cost-effective tool.

Moreover, remote sensing image data obtained in the current
growing season can be useful for the management of reoccur-
ring diseases, such as soil-borne fungi, in the following seasons.
Another challenge for remote sensing detection of crop disease is
that multiple biotic and abiotic conditions may coexist and pro-
duce similar effects on the color, geometry, or vigor of the upper

crop foliage. Crop diseases and insects and some soil problems
can cause morphological (wilting or stunting) and physiological
(chlorosis, darkening, or dehydration) changes in a crop. If only
one dominant disease occurs or if multiple diseases or stresses
with distinctive symptoms are present, remote sensing imagery
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Table 3
Overview of the different remote plant sensing techniques and which radiation
wavebands are involved.

Technique Measurement waveband

Reflection based sensing:
• Spectral reflectance 450–2100 nm spectrum
• Imagery:

Monochromatic (images in 1
waveband)

Any combination of
monochromatic wavebands

Multispectral e.g., RGB, CIR
(images in multiple wavebands)

Emission based sensing:
thermography

Shortwave thermography: 3–5 �m

Longwave thermography:
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Fluorescence
• Blue excitation (350–420 nm) 690 nm

ill be able to discriminate the infected areas; otherwise, discrim-
nation of the diseases may be possible with additional knowledge
f the dynamic behaviors of the diseases or other stresses and
elevant information of the specific soil and crop conditions. More-
ver, high spatial resolution multispectral and/or hyperspectral
magery taken at multiple times may be necessary. As remote sens-
ng imagery is becoming more available and less expensive, it will
resent a great opportunity for both growers and researchers to
ore effectively use this data source for the detection of crop dis-

ases. Many crop diseases have been identified as good candidates
or remote sensing, but practical procedures for farming operations
re still lacking. Efforts need to be devoted to the development of
perational methodologies for detecting and mapping these can-
idate diseases. Meanwhile, more research is needed to evaluate
ore advanced imaging systems and image processing techniques

or distinguishing the diseases that are difficult to detect or occur
ith other stresses.

.2. Potential spectral techniques for disease detection

The basic techniques discussed in this paper for sampling non-
ontact information about the status of plants are illustrated in
able 3.

.3. Disease detection using light reflection

As the primary effects of different diseases vary (chlorophyll,
ater and temperature effects), different wavebands are suitable

or detection of different diseases (Bryson et al., 1998; Dudka et al.,
998).

For example, reflectance changes in violet-blue and NIR wave-
ands (380–450 nm and 750–1200 nm) were used to detect early

nfections of cucumber leaves by the fungus, Colletotrichum orbic-
lare (Sasaki et al., 1998). Later, when visual symptoms appeared,

nfections were characterized by reflectance changes in chlorophyll
bsorption bands (470 nm and 670 nm) and, with lower signif-
cance, in NIR reflectance. Polischuk et al. (1997) used spectral
eflectance measurements to make an early diagnosis of symp-
oms in Nicotiana debneyi plants at different stages of tomato

osaic tobamovirus infection. Reduction in chlorophyll content in
he leaves could be detected by reflectance measurements within
0 days after inoculation even though significant visible differ-
nces between the control and the infected plants were not noted

ntil after three weeks. While evaluating seven disease assessment
ethods for downy mildew in quinoa, Danielsen and Munk (2004)

ound that reflectance measurements in the red (640–660 nm)
nd NIR (790–810 nm) wavebands could provide highest corre-
ation with yield loss. This is explained by its ability to measure
cs in Agriculture 74 (2010) 2–33

pathogen-induced defoliation. Reflectance of tall fescue within the
810-nm band exhibited the strongest relationship (19% ≤ R2 ≤ 63%)
with visual severity estimates of Rhizoctonia blight and gray leaf
spot (Green et al., 1998). Hyperspectral AVIRIS data were taken
from Phytophthora infestans infested tomato fields by aerial imaging
(Zhang et al., 2002). Furthermore, Zhang et al. (2003) sorted out that
the spectral reflectance of the NIR region, especially 0.7–1.3 �m,
was much more valuable than the visible range to detect crop dis-
ease. Malthus and Madeira (1993) studied the spectral effect of field
bean (Vicia faba) leaves infected by the necrotrophic fungus Botry-
tis fabae. Infestation caused reduced photosynthesis, attributed to a
decreased stomatal conductance. However, no changes in spectral
reflectance were evident before visual symptoms were observed.
The most significant changes in spectral reflectance associated
with the disease were a flattening of the response in the visible
region and a decrease in the near-infrared reflectance shoulder
at 800 nm. Both these responses may be attributed to collapse of
leaf cell structure as the fungus spread. Muhammed and Larsolle
(2003) concluded that the fungus Drechslera tritici-repentis mainly
affected the spectral signature by: (1) a flattening of the green
reflectance peak together with a general decrease in reflectance
in the near-infrared region and (2) a decrease of the shoulder of the
near-infrared reflectance plateau together with a general increase
in the visible region between 550 and 750 nm. Devadas et al. (2009)
concluded that in order to discriminate between different wheat
rust species there was a need to apply a combination of different
spectral indices as it was impossible to achieve high discrimination
performance by using isolated indices. A sequential application of
firstly the Anthocyanin Reflectance Index (ARI) to separate healthy,
yellow rust and mixed stem rust/leaf rust classes followed by the
Transformed Chlorophyll Absorption and Reflectance Index (TCARI)
to separate leaf and stem rust classes could provide a means of
wheat rust species discrimination. Huang et al. (2007) showed that
the Photochemical Reflectance Index (PRI) was a very a robust spec-
tral index for quantifying yellow rust infection. The effectiveness of
PRI was explained by the fact that it is highly correlated to biomass
and foliar nitrogen content and rust incidence is generally nega-
tively correlated.

However, disease presence can also indirectly be estimated.
Based upon 810 nm canopy reflectance models, variations in alfalfa
yield and LAI could be 12–15% better explained than using percent-
age defoliation through visual assessment as independent variable
(Guan and Nutter, 2002). Defoliation was due to foliar disease epi-
demics and the absence of fungicide spray. The relation between
NDVI (Rouse et al., 1974), red reflectance variations from airborne
imaging sensors and yield and vine density variations in cranberry
fields has been investigated in Pozdnyakova et al. (2002). The major
cause of variation was found to be Phytophthora root rot disease.

When plants are eaten by insects, these plants will die off
very rapidly and senescence occurs, explaining the radical spectral
changes observed by Yang and Cheng (2001). The authors discov-
ered a very high dependency of the blue, red and NIR spectral
regions to infestation of brown planthoppers in rice, meanwhile
green regions were completely insensitive. As planthoppers eat the
rice leaves, the question here is whether the measured spectral
signature is purely pest related, or a mixture in which radiation
from soil and senescent leaves increases with infestation inten-
sity. Riedell and Blackmer (1999) obtained similar results for wheat
infested with aphids, in particular greenbugs (Schizaphis graminum
Rondani) and Russian wheat aphid (Diuraphis noxia Mordvilko).

An important result regarding early detection of viral diseases is

presented in Naidu et al. (2009) who have shown that it is possible
to detect the presence of the grapevine leafroll disease (GLD) even
at a presymptomatic stage. This was mainly due to the negative
effect of the virus infection on the physiology of the plant result-
ing in metabolic and pigment changes. Although visible changes
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ig. 8. Illustration of the relevant measurement techniques during the infection of
foliar disease, related to what these techniques monitor.

n leaf color were more apparent in symptomatic than in non-
ymptomatic leaves, leaf reflectance measurements could provide
pecific reflectance parameters (in the form specific combinations
f indices and reflectance bands) for detection of GLD during both
on-symptomatic and symptomatic stages of the disease in red-
erried cultivars.

In summary, the effectiveness of disease detection techniques
hat are based on light reflection depends on a number of
actors, namely changes in concentrations of non-chlorophyll pig-

ents, extent of chlorophyll degradation and on the spectral
haracteristics of the infected leaf areas. At early stages of infec-
ion, discriminating features that incorporate NIR reflectance are
xpected to be less efficient, owing to the time lag between infec-
ion and breakdown of internal leaf structure. Therefore, the stage
f the disease and the spread of the symptoms is a crucial factor
ffecting the capability of disease detection and infection quantifi-
ation based on techniques that rely on light reflection.

.4. Disease detection using fluorescence

The visible light absorbed by leaf pigments is partially used to
rive photosynthesis and partially dissipated as fluorescence, re-
mitted at VIS-NIR wavelengths (peak emission at 690 nm) and as
adiative heat in the TIR region. Although affected by the intensity
f the incident light and the normal functions of the leaf, these
e-excitation processes occur in competition with photosynthesis;
ence, fluorescence and thermal sensing can be used as indirect
ethods to probe the photochemical efficiency of a plant, i.e., its

ealth status.
In general, plants react quickly to stress factors, such as disease,

y decreasing photosynthesis, thus increasing fluorescence and
eat emissions (Scholes, 1992; Wright et al., 1995). For example,
aley (1995) found sub-millimeter sized high fluorescence emis-

ion spots that corresponded with TMV infection points on tobacco
eaves. Similar patterns were found on bean leaves infected by bean
ust (Peterson and Aylor, 1995). Bodria et al. (2002) observed flu-
rescence spots, with intensity significantly higher than healthy
issue, on wheat leaves 2-3 days after inoculation with Brown rust
pores (Puccinia recondida), i.e., 3–5 days before the first visual
ymptoms appeared (see also Fig. 8).

Decrease in photosynthesis also affects fluorescence kinetics.
choles and Rolfe (2003), who studied the effects of crown rust
n oat leaves, discriminated infected and healthy regions by dif-
erences in the emission kinetic curves. Similarly, Abutilon mosaic

irus could be detected on leaves of Abutilon striatum (Osmond et
l., 1998).

In addition to changes in fluorescence kinetics, the spectrum
f light that fluoresces from diseased plants is different from that
rom healthy plants, with a significant decrease of relative inten-
ics in Agriculture 74 (2010) 2–33 21

sity in the blue and green bands compared to red and NIR bands
(Buschmann and Lichtenthaler, 1998; Ludeker et al., 1996).

In summary, although in general, changes in fluorescence emis-
sion do not provide a precise and clear indication of specific stress
factors, fluorescence does enable anticipation of disorders in plants,
notable disease symptoms, since the photosynthetic process is
affected before tissue modifications occur.

8.5. Disease detection by thermography

Stress factors can also change the thermal properties of plants,
influencing emissions in the TIR band, mainly through effects on
the water status of leaves (Berliner et al., 1984; Mottram et al.,
1983; Pinter et al., 1979). For example, stress can induce stomatal
closure resulting in an increase in leaf temperature, detected by
thermal imaging, often at an early stage of infection (Lindenthal et
al., 2005; Chaerle et al., 1999; Omasa, 1990). Spots of higher tem-
perature were detected on the leaves at the infection points. Oerke
et al. (2005) detected a remarkable temperature decrease (up to
1 ◦C) of a downy mildew infection (Pseudoperonospora cubensis) on
cucumber leaves as well as an apple cab fungus infection (Venturia
inaequalis) on apple leaves. This decrease was due to a local increase
in water loss, since the disease ruptured the cuticle. After a longer
infection period, the overall temperature of the leaves increased.
However, presence of disease affected temperature only slightly.
These last four authors investigated thermography in temperature
controlled environments.

Lili et al. (1991) observed the thermal effects of eyespot (Tapesia
yallundae) and cereal cyst nematode (Heterodera avenae) infections
in winter wheat and suggested that the diseases could be detected
and mapped using aerial instant thermal imagery. This method was
later applied by Nicolas (2005) for detecting Septoria tritici infec-
tions in winter wheat. Only when the highest wheat leaves were
infected, the temperature difference between healthy and diseased
canopies started to increase.

Leinonen and Jones (2005) reported the feasibility of thermog-
raphy for estimating the presence of stress on grape-vine canopy
at a proximal distance of about 1 to 2 m. They pointed that sunlit
leaves showed a higher average temperature than shaded leaves.
Therefore the different leaves needed to be separated by using a
visual reflection camera. Both thermal and visual cameras were
collimated on the same field of view. The complexity of such an
approach increases when topographical plant height differences
increase, e.g., in wheat.

In summary, looking at temperature differences is an indirect
method for monitoring crop stress. The only successful investi-
gation at a field scale (Nicolas, 2005) needed aerial imaging for
capturing thermal radiation when the entire field was equally
illuminated. Rapidly changing environmental factors, such as
cloudiness, wind and eventual rainfall prohibit reliable in-field dis-
ease detection by thermography at a proximal distance (1–2 m).

8.6. Relevant optical properties for disease detection

The main relevant measurement techniques for detecting foliar
infections are briefly represented in Fig. 8. During the earliest infec-
tion stages fluorescence is the most appropriate technique since
it samples the health status in terms of photosynthetic efficiency.
Following the initial metabolic changes, the fungus spreads radi-
ally around its infection point. The initial infection area necroses:
it looses pigmentation, the photosynthetic apparatus is dissem-

bled and the cell walls collapse. At this moment infection patterns
become visible.

Analysis of the light reflection can help in detecting the infec-
tions from this stage onwards. Pathogen propagules can be detected
in the VIS (depending on the pathogen); chlorophyll degradation in



22 W.S. Lee et al. / Computers and Electronics in Agriculture 74 (2010) 2–33

Table 4
Overview of different sensor technologies for disease detection in the field.

Sensor technology Advantages Disadvantages Best potential use

Fluorescence Early stage disease detection even before
tissue modifications occur

Cannot provide a clear indication of specific
stress factors, medium detection accuracy,
accuracy sensitive to light intensity

As an early alarm, anticipation of disorders
in the future, laboratory use or night
conditions

Light reflection Can provide a clear indication between
stress factors, high recognition accuracy of
diseased plants

More effective after symptoms and
discoloration become visible. Sensitive to
control intensity, discoloration and age

For disease and other stress recognition in
the greenhouse and in the field, to
discriminate between different stress types

Thermography Can detect disease infestation if this has Highly dependent on illumination, very
curacy
ions, s
provi

factor
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affected the water status of the leaves,
more effective for airborne remote sensing

low ac
condit
cannot
stress

he VIS and red-edge (550 nm; 650–720 nm); senescence in the VIS
nd NIR (680–800 nm) due to browning and SWIR (1400–1600 nm
nd 1900–2100 nm) due to dryness; changes in canopy density and
eaf area in the NIR.

While the disease gradually takes control over the entire plant,
t will show a global stress, which conducts to a general closure of
he stomata, in view to reduce water losses. This change in tran-
piration can be monitored by thermography. However, the global
eaf temperatures are rapidly changing, and are heavily depen-
ent upon ambient temperature, illumination and wind. Therefore,
ue to changing environmental factors, thermography gives poor
esults when used on proximal sensing platforms.

The reviewed techniques give more reliable detection results
hen diseases are fully developed and infestations are high. Clearly,

ome changes in the spectral characteristics of plants provide the
otential for using optical signals to detect the presence of diseases

n agricultural crops.
The effectiveness of disease detection depends on the data pro-

essing algorithms that are used. For each crop-disease system,
yperspectral imaging methods can be used to simplify and auto-
ate disease detection. This can be based on simple formulae,

lgorithms or done by neural networks, e.g., Moshou et al. (2004),
nd Bravo et al. (2003) used image analysis algorithms to discrimi-
ate between background and wheat canopy (based on reflectance
t 675 nm and 750 nm) and then by classification of combinations
f spectral wavebands to discriminate between healthy leaf tis-
ue and yellow rust disease lesions in winter wheat (West et al.,
003). Further improvement resulted from multisensor fusion of
pectral and fluorescence features (Moshou et al., 2005) where a
pectrograph provided a combination of reflectance intensities at
elected wavebands. In the same paper, these data were combined
ith lesion indices resulting from fluorescence imaging of the same
lants. The advantages, disadvantages and the best potential use of
he presented sensor technologies are shown in Table 4.

. Radio-frequency identification (RFID)

.1. RFID technology

Recent outbreaks of food borne diseases like E. coli and
almonella in fresh produce (spinach, green onions, and tomatoes)
ave reduced consumers’ confidence in the safety of the specialty
rops supply system (Buzby and Frenzen, 1999). In addition, the
lobalization of the world economy and free trade in agricultural
roducts has promoted the flow of food products across national
nd regional borders, which enhances the possibility of wide spread

f food borne diseases. Consumers and other stakeholders in the
ood supply chain demand greater assurance and transparency on
he quality and safety of fruits and vegetables, as well as the impact
f food production on the environment and ecology (Opara and
azaud, 2001). Food traceability is defined as the ability to trace
in changing weather
ensitive to leaf coverage,
de a clear indication of specific
s

when illumination conditions are uniform
and the ambient temperature is kept
constant

the history of a food product including its origin, growing practices,
and the source of inputs (Langan, 2000). The RFID has become popu-
lar in recent years for the identification of items in the management
of global supply chain. It is the most promising technology that can
be used in the traceability of fruits and vegetable production supply
chain.

RFID stands for radio-frequency identification which is a tech-
nology for automatic identification and it uses the RFID tags to
store and retrieve data remotely. It emerged as a new technology
for identification in 1970s, and it has gained much attention and
developed in the past two decades (Want, 2003). The most visible
application of RFID is probably the automatic toll payment systems
at toll plazas to scan tags attached to the windshields of passing
cars.

Typically, an RFID system consists of RFID tags, a reader, and a
computer for database management. The RFID tag can be attached
to or embedded into a product, animal, or person for the purpose
of identification using radio waves. Each tag consists of an antenna
connected to the silicon chip and encapsulated inside a module.
Some tags can be read from several meters away and beyond the
line of sight of the reader (Want and Russell, 2000).

Usually, the RFID tags can be classified into passive and active
RFID tags. The major difference is whether the RFID tags have
the internal power supply or not. The active RFID tags have their
own internal power source to power the integrated circuits and to
broadcast the response signal to the reader. Although the commu-
nications from active tags to readers is typically much more reliable,
the active RFID tags are generally bigger and more expensive caused
by battery volume and battery price.

Unlike the active RFID tags, the passive RFID tags requires no
batteries and they can be intermittently powered from a distance by
a reader that broadcasts energy to it. The tag exchanges information
with the reader. This greatly reduces the size, price of the tag, as
well as the related maintenance. The RFID tag can store non-volatile
data through writable EEPROM and the data not only include the
ID number, but also include other important information like the
origin and growing information about the product. Because of its
small size, lower cost, and free maintenance, the passive RFID tags
have the great promise to be used in the specialty crops postharvest
industry (Finkenzeller, 2003).

9.2. RFID application in specialty crops and agriculture
production

Pesticides and herbicides could pose the threat to human health
and the environment. The conventional paper-based record keep-

ing of these agrochemicals is not very reliable and subject to
human errors and bias. A study was conducted to investigate
using the RFID tag to identify and verify agrochemicals in trace-
ability systems (Peets et al., 2007). It was suggested that the
most feasible approach is to store only minimum essential infor-
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ation on RFID labels and utilize a database for the storage of
etailed data. The suggested potential information to store was:
ountry of registration, chemical type, unique registration num-
er of an agrochemical, container size, specific gravity, unit of
easure and a digital signature addressing the data integrity and

ecurity.
University of Georgia Precision Agricultural Team developed

wireless sensor networks for scheduling irrigation in cotton
Vellidis et al., 2007). The soil moisture and temperature was mon-
tored using this network system. This network consisted of a
eceiver, laptop computer, and sensor nodes installed in the field.
ach sensor node consisted of up to three moisture sensors and four
hermocouples. In each node, a RFID tag transmitted data to the
eceiver through a specially designed circuit board. This wireless
ensor network system was able to provide real time information
egarding the geospatially variable soil water status in cotton field,
hich can be used for a closed loop irrigation control system to
etermine timing and amounts for real time site-specific irrigation
pplication.

.3. Future perspectives

Although the development of the RFID is fast, there are several
echnical challenges that prevent it from being widely adopted in
he industry. The first issue is its high cost. An average RFID costs
oughly 20–30 cents apiece, which is too costly for some products
ith only 50 cents value such as fruits and vegetables. Second, RFID

ignals are relatively weak and can be attenuated or blocked over
hort ranges by certain material. Third, there is no standard for this
echnology currently, which causes the incompatibility of tags and
eaders in some cases.

Compared to the Universal Product Code (UPC) bar codes which
re read optically at very short distances, the RFID tags can be read
t much longer distances through radio waves and can also store
uch more information than mere an ID code in the product. For

nstance, besides the ID number for each produce, the RFID tags can
tore the origins and the growing information about the produce. It
s foreseeable that the RFID systems will replace the Universal Prod-
ct Code (UPC) bar codes in the near future. Some experts predict
hat RFID will be widely used around 2015, when the cost of RFID
ags falls enough to make them economically viable for labeling
nexpensive consumer products (Want, 2003).

In summary, the RFID technology makes it possible to monitor
nd observe the physical world in ways not previously possible.
hey will greatly enhance the productivity of specialty crops pro-
uction and postharvest operations.

0. Machine olfaction system

The sense of smell is one of the most important senses for
umans and animals. Humans can recognize approximately 10,000
cents and many animals, such as bloodhounds, even have far supe-
ior olfactory system than humans (Axel, 1995). Olfaction enables
ost animals to identify food, predators and mates with both sen-

ual pleasure and warning of danger, which is essential for their
urvival (Leffingwell, 2002). The human perception of certain odors
an induce specific thoughts, memories, and behaviours, as well as
elp us identify whether a food is editable or not.

Many studies have proven that compositional changes in
olatiles occur during fruit and vegetable ripening, and vary

epending on the presence of diseases and physical damages (Hirvi
nd Honkanen, 1983). By detecting these volatile changes, the phys-
cal properties and quality of fruits and vegetables can be evaluated.
rained human panelists are usually used for applications rang-
ng from food quality inspection, perfumes and cosmetics aroma
Fig. 9. A generic electronic sensor architecture (adapted from Gardner and Bartlett,
1994).

evaluation, to agricultural product odor detection. However, the
main drawback of human sensory panels is that they cannot detect
volatile compounds without odor, while many such compounds are
very important indicators for agricultural produce quality. Humans
are also subjective and can only work for a short period of time. Ana-
lytical equipment such as gas chromatography-mass spectrometry
(GC-MS) are effective in detecting constituents in volatile mixtures,
but they are expensive, time consuming, and sometimes not ade-
quate (Gardner and Bartlett, 1994).

The development of the electronic nose seems to address these
issues. In the early 1980s, Persaud and Dodd (1982) at Warwick
University developed a prototype of electronic nose as an intelli-
gent chemical sensor array system to classify odors. Since then, the
development of the electronic nose has been growing rapidly and
many conferences were held on this topic (Gardner and Bartlett,
1994). The electronic nose is also called an artificial nose or mechan-
ical nose: “An electronic nose is an instrument which comprises
an array of electronic chemical sensors with partial specificity and
an appropriate pattern-recognition system, capable of recognizing
simple or complex odors”.

A generic architecture of an electronic nose was proposed by
Gardner and Bartlett (1994) as shown in Fig. 9: an odor reacts with
the sensor array which converts the chemical reaction into an elec-
trical signal. Further data processing and classification is made by
a pattern recognition (PARC) engine.

The term “electronic nose” has been admitted by many
researchers because it possesses two basic characteristics of the
human olfactory system: first, the electronic nose gas sensors and
pattern recognition software are conceptually analogous to human
olfactory receptors and the brain, respectively; second, the elec-
tronic nose recognizes the odor by an overall smell pattern instead
of identifying each different constituent of an odor, which is simi-
lar to the human smell principle. Nevertheless, the electronic nose
does not work in the same way as the human nose does, and its
sensitivity is still far less powerful than the human nose (Mielle,
1996).

10.1. The electronic nose system

The electronic nose system typically consists of two major
components: hardware (gas sensors) and software (pattern recog-
nition program). A gas sensor is a device that responds to a wide
range of volatile molecules in gases and is capable of convert-
ing a chemical quantity into an electrical signal. Typically, the
gas sensors are based on different principles including electri-
cal, optical and mass change. Generally, the commercial electronic
noses can be divided into two categories based on their working
temperature: hot sensors which operate at elevated temperature

(100–500 ◦C) and cold sensors which work at ambient temperature
(Mielle, 1996). An ideal gas sensor should possess the following
characteristics (Mandelis and Christofides, 1993; Schaller et al.,
1998):
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. High sensitivity to chemical compounds of interest and low sen-
sitivity to humidity

. Chemically selective: they must respond differently to different
volatiles

. Reversible

. Non-contaminating and non-poisoning

. Short reaction and recovery time

. Robust and durable

. Easy calibration

. Simple operation

. Small dimension

. Low noise and low cost

0.2. Metal oxide semiconductor gas sensors

Metal oxide semiconductor gas sensors (MOS), which were
nvented by Taguchi in 1960s, are one of the earliest commercially
vailable gas sensors with more than 70 types and many providers
Schaller et al., 1998). Basically, MOS gas sensors detect the con-
uctivity change caused by the adsorption of gases and subsequent
urface reactions. There are two types of MOS gas sensors based
n the metal oxide coating film: n-type semiconductors which
re composed of zinc, tin or iron oxide and respond to reducing
ompounds; p-type semiconductors which are composed of nickel
xide or cobalt oxide and respond to oxidizing compounds such as
2, NO2 and Cl2 (Mielle, 1996).

The working mechanism of MOS gas sensors follows two steps:
rst, oxygen from air is adsorbed on the surface of metal oxide
emiconducting film and oxygen traps free electrons from the semi-
onductor, which increases the resistance of the semiconductor;
econd, the electrons are freed by means of reaction of the oxygen
nd reducing gas, which reduces the resistance of the semiconduc-
or. Hence, the presence of the reducing compounds at the surface
f the semiconducting film increases the conductance in a nonlin-
ar manner (Schaller et al., 1998; Pearce et al., 2003). The selectivity
f a metal oxide film to different chemical compounds can be mod-
fied by doping with different catalytic metals, and changing the

orking temperature within a range of 50–400 ◦C (Sberveglieri,
992). Due to its high working temperature, MOS gas sensors are

nsensitive to humidity and usually can be used for a longer time
5 years) than other gas sensors, such as conducting polymer sen-
ors. However, the main weaknesses of MOS gas sensors include
hat they are extremely sensitive to ethanol which may blind the
ensor to detect other compounds, that they may be poisoned by
rreversible binding by compounds such as sulfur compounds or

eak acids such as vinegar and cheeses, and that their high work-
ng temperature prevents them from being used in an environment
ontaining large amounts of flammable chemicals (Mielle, 1996).

MOS gas sensors can be manufactured in a large scale, which
uarantees repeatability between different sensors and reduces the
ensor costs. The main providers for this gas sensor include Figaro
ngineering Inc. and New Cosmos Electric Co., Ltd (Pearce et al.,
003).

0.3. Conducting polymer gas sensors

The conducting polymer gas sensor is another widely used and
ommercially available gas sensor. Similar to the MOS gas sensor,
he conducting polymer gas sensor also identifies odors by detect-
ng sensor resistance change, although its operating mechanisms
re more complex and have not been well understood so far (Mielle,

996).

Basically, these types of sensors are made of three main compo-
ents: a substrate, a pair of gold-plated electrodes, and a conducting
rganic polymer layer. When the sensor is exposed to an ana-
yte, the conducting organic polymer film swells, which causes the
cs in Agriculture 74 (2010) 2–33

increase in resistance because the conductive pathways through
the material are disrupted. Typically, this type of sensor consists of
a sensor array, and each sensor can respond to a variety of vapors
with partial overlapped selectivity. An array of sensors which con-
tain different polymers produces a distinct fingerprint for each
odor, due to their different swelling properties. The pattern of the
resistance change over the sensor array provides the evidence for
qualitative classification of different smell patterns, and the ampli-
tude of resistance change gives quantitative evidence for vapor
concentration (Sberveglieri, 1992).

Polymers are relatively cheap and a large number of poly-
mers with different functions are available, which can be used
to fabricate different selective sensors. Commonly used polymers
include polypyrroles, polyanilines, and polythiophene (Schaller et
al., 1998). Another main advantage of using conducting polymer
sensors is that they can be operated in ambient room tempera-
ture. However, their relatively slow response (20–40 s) and drift
over time are inherent drawbacks which prevent them from being
used for rapid analysis and obtaining repeatable results over long
periods of time. One main provider of CP gas sensors is Smith Detec-
tion (Smith Detection Inc., CA) which produces the Cyranose 320
electronic nose.

10.4. Surface acoustic wave (SAW) sensors

A surface acoustic wave sensor detects volatile compounds by
sensing the mass change based on a piezoelectric effect. Piezoelec-
tric crystals have a very stable resonance radiofrequency which
propagates on the surface of the crystal. The radiofrequency oscil-
lation in SAW, known as “Rayleigh waves”, is adjusted by the
mass change due to the presence of adsorbed volatile compounds
(Sberveglieri, 1992). Usually, the characteristic frequency is in the
range of 100–1000 MHz. The piezoelectric materials are made of
ZnO or lithium niobate and they are coved by two pairs of interdig-
itated combs which are typically made of aluminum and used as
wave emitters and reflectors. The sensing membrane can be chem-
ically modified to adjust the sensor’s specificity. The frequency
change �fV of the SAW due to the adsorption of vapor and con-
sequent mass change can be expressed as (Pearce et al., 2003):

�fV = �fpcVKp

�p
(2)

where �fp is the change in frequency caused by the polymer
membrane itself, cV is the vapor concentration, Kp is the partition
coefficient and �p is the density of the polymer membrane.

SAW sensors are highly sensitive but noise caused by analogue
electronics easily interferes with them. Other drawbacks include
the difficulty to replace sensors and a drift of response due to tem-
perature fluctuations (Mielle, 1996).

10.5. Optical gas sensors and others

Optical gas sensors detect odors by sensing the optical
properties such as absorbance, reflectance, fluorescence or chemi-
luminescence when a light source excites the gas. A typical optical
gas sensor consists of four components (Pearce et al., 2003): a light
source, suitable optics, a detector and the sensor. For instance, at
one end of the fiber, an analyte-sensing element is deposited on
fibers with a diameter of 2 �m and imaging bundles with a diameter
of 500 �m. Analyte gases can interact with the sensing element and

generate optical property changes such as intensity change, spec-
trum change, and wavelength shift in fluorescence. These changes
can be detected at the other end of the fiber and the responses
reflect not only the nature of the vapor mixture but the concentra-
tion of gases (White et al., 1996).
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Optical gas sensors have advantages such as being free from
lectromagnetic interference, extremely low light attenuation, and
ery high sensitivity (for fluorescence). However, they are also
ore expensive, more complex, and sometimes suffer from pho-

odegradation on their fluorescent indicators (White et al., 1996).
lthough they have not been commercialized, optical gas sensors
re being actively researched and they are gaining much publicity.
n example is Tufts University’s optical electronic nose, notable

or the biological inspirations behind the sensors (Dickinson et al.,
996). Other research on surface plasmon resonance (SPR) and col-
rimeter coupled optical fibers is also underway (Ballantine et al.,
992; Nelson et al., 1996).

There are many other efforts to make artificial noses based on
ifferent principles, enhancing their capability to mimic a human
ose. For instance, an electronic nose was made to differenti-
te fruit cultivars by utilizing only 1 s odor sniffing samples, and
t achieved encouraging results (Gelperin et al., 1999; Ouellette,
999). Researchers also tried to combine biotechnology (single
tranded DNA) and nanotechnology (single wall nanotube) to
evelop new generation of artificial noses (Staii et al., 2005), which
ay open a new door for gas sensing technology.

0.6. Pattern recognition algorithms

Essentially, the machine olfactory system is a combination of
hemical sensors and a pattern recognition system that can dis-
riminate different odor patterns. Thus, the pattern recognition is
ndispensable in a machine olfaction system. The electronic nose
ypically consists of an array of sensors and thus the data from the
lectronic nose is multivariate in nature. The multivariate statistical
ata analysis techniques are usually used to process the electronic
ose data. These techniques include principal component anal-
sis (PCA), multivariate analysis of variance (MANOVA), cluster
nalysis (CA), and discriminant analysis (DA). The artificial neu-
al networks (ANN) often give higher recognition and prediction
robability than statistical classification algorithms. Another clas-
ification algorithms, support vector machine (SVM), gains more
opularity in recent years due to better performance and ease of
se (Hsu et al., 2007).

0.6.1. Principal component analysis
The principal component analysis (PCA) is one of the most use-

ul techniques for multivariate data analysis, which is based on
arhunen-Loeve expansion and used to reduce the dimension of

he problem by projecting the data from a p-dimensional space to
k-dimensional space (k < p) (Anderson, 2003). It is used for reduc-

ng the dimensionality of the data while preserving the structure.
CA uses eigenvectors and eigenvalues to define the reduced sub-
pace, which is a representation of the original p-dimension space.
he principal components are linear combinations of interrelated
ariables. Coefficients of the linear combinations are the eigenvec-
ors of the covariance or correlation matrix. A correlation matrix
as used in this analysis to enhance the influence of small spectral

eatures. The PCA score plot can provide information on the clus-
ering of data, while the PCA loading plot can be used to investigate
he contribution from each sensor.

0.6.2. Bayesian discriminant analysis
Both the linear discriminant analysis (LDA) and quadratic dis-

riminant analysis (QDA) are based on Bayesian discriminant

heory (Anderson, 2003). In Bayesian discriminant analysis, the
rior probability is defined as the probability of a random sample
elonging to population �i:

i = Pr(�i) (3)
ics in Agriculture 74 (2010) 2–33 25

We assume that the observations X from population �i is sam-
pled from a multivariate normal distribution with mean vector �i
and variance–covariance matrix ˙i.

The posterior probability that a random sample belongs to pop-
ulation �i is:

p(�i) = f (x/�i)pi∑g
j=1f (x/�i)pj

(4)

The decision rule is to classify the sample unit into the popula-
tion �i that maximizes the posterior probability p(�i).

10.6.3. Artificial neural networks
Gas sensor array data may often be non-linear in nature,

and artificial neural networks as a non-linear method could pro-
vide a more robust classification model. Inspired by biological
nervous system, the neural networks are composed of simple ele-
ments operating in parallel. By adjusting the weights (connections)
between elements, a neural network can perform a particular
function (Bishop, 1995). Commonly, neural networks are adjusted,
trained by the training data set in which the specific target value
is known. After a neural network is trained, it can be applied to
classified unknown data set.

The backpropagation (BP) network is known for its ability to
generalize well on a wide range of problems. This network is gen-
erally robust, although one drawback is that the training is slow.
Typically, three layers (input, hidden, and output layer) are suffi-
cient for the vast majority of problems and each layer is connected
to the immediately previous layer.

The probabilistic neural network (PNN) can be trained quickly
on sparse data sets. PNN networks are three layer networks wherein
the training patterns are presented to the input layer and the second
layer produce a vector of probabilities. The output layer picks the
maximum of these probabilities and produces a 1 for the class and
a 0 for the other classes. PNN uses the radial basis function in its
second layer.

The learning vector quantification network (LVQ) is a super-
vised competitive ANN which transforms high dimensional data
to a two-dimensional grid, without regarding data topology. LVQ
uses pre-assigned cluster labels to data items to facilitate the
two-dimensional transformation so as to minimize the average
expected misclassification probability. LVQ usually has the slower
training speed.

10.6.4. Support vector machine
Support vector machine was proposed in the later seventies

(Vapnik, 1995) and now receiving increasing attention due to
its good generalization performance. It is a supervised learning
method used for classification and regression. The basic idea of the
support vector machine is that it simultaneously minimizes the
empirical classification error and maximizes the geometric margin
between two data sets. Support vector machine has been used in
the electronic nose data analysis (Distante et al., 2003). In one case,
it was used to create a prediction model to classify lung diseases
(Machado et al., 2005).

10.7. Application of volatile-sensing sensors in specialty crops

Most fruits have distinct aromas and their volatile profile
changes when they become ripening or with the disease’s pres-

ence. There are three major reasons for the volatile profile changes:
metabolic changes, interaction with the environment, and pos-
sibility of infections. By utilizing this special characteristic, the
electronic nose has been successfully applied in fruit ripening pre-
diction and quality measurement.
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A metal oxide semiconductor (MOS) based electronic nose was
sed to classify four peach cultivars and to assess the ripening
tage during the shelf-life (Benedettia et al., 2008). An electronic
ose based on metallopophyrin-coated quartz microbalance sen-
ors was used to classify tomatoes grown in the conventional and
rganic production systems (Sinesio et al., 2000). The enose result
as compared with the trained human sensory panel. A tin oxide

hemical sensor array and neural network was applied to classify
eaches, pears and apples into three different stages of ripeness.
he electronic nose showed 92% success rate for peaches and pears,
nd a slightly lower accuracy for apples (Brezmes et al., 2000).
arrazzo et al. (2005a) studied the feasibility of using the prototype

lectronic nose which consists of 32 conducting polymer chemi-
al sensors, to compare ‘Malus domestica Borkh’ apple headspace
as. Apple headspace volatile chemicals were measured in terms of
pple flavors, essences, and known component mixtures by the e-
ose and the results were assessed according to change over time,
etween cultivars, and between whole apple and juice from the
ame apple (Marrazzo et al., 2005a,b).

Oshita et al. (2000) applied the semi-conducting polymer based
lectronic nose to measure the odors emitted from ‘La France’ pears
hich were treated in three different storage conditions after being
arvested. It was found that the electronic nose was able to clas-
ify pears into three classes dependent on their physiological states
hrough distinctive odor pattern formed by 32 outputs. A strong
elationship between the results obtained by headspace GC and the
lectronic nose was observed. Brezmes et al. (2001) used an elec-
ronic nose to evaluate the ripeness of pinklady apples. Fruit quality
ndicators were also obtained by a chemical analysis approach to
ompare results from both techniques. Among them, firmness was
he best-predicted parameter with a correlation coefficient of 0.93.

It is important to monitor and control the variations occur-
ing during fresh fruits postharvest period. A thickness shear mode
uartz resonator (TSMR) based electronic nose was used to detect
he presence of mealiness and skin damage of apples and oranges
Di Natale et al., 2001). It was found that the electronic nose was

ore sensitive to the presence of surface damages than to the
ealiness.
The electronic nose can be used to monitor the ripeness of

ruits and help determine the harvesting time. Saevels et al. (2003)
pplied an e-nose as a non-destructive tool to evaluate the opti-
al harvest date of apples. Calibration models for the prediction

f the maturity had a validation correlation of 0.91 for ‘Jonagold’
nd 0.84 for ‘Braeburn’. Four apple quality characteristics (soluble
olids, acidity, starch and firmness) were predicted by calibration
odels, which were based on two years data for two cultivars. Use

f the e-nose as a non-destructive approach to predict the optimal
arvest time of apples is valid, however, the measurement time is
oo long to be a fast technique.

Usually more sources of data provide more information and
chieve better performance. Multi-sensor data fusion approach
ombines data from multiple sensors and gets a better interpre-
ation of the target than using individual sensor alone (Hall, 1997).
he multisensor data fusion models were developed to combine
he Cyranose C320 electronic nose and the zNose to detect defec-
ive apples (Li et al., 2007). A benchmark study was conducted
o compare three artificial neural networks for their classification
erformance (Li and Heinemann, 2007). The genetic algorithms
ere applied to optimize the feature selection and reduce the data
imensionality (Li et al., 2008). At the feature level fusion, ANN-
ased fusion models reduced the classification error rate to 1.8% on

verage in 30 independent runs, and at the same time only about
0% of the sensors from the Enose and zNose were used for input.
t the decision level fusion, a Bayesian network was developed

o integrate classification decisions made by the Enose and zNose
lassifiers independently. Sensor fusion models were validated by
cs in Agriculture 74 (2010) 2–33

testing on new data sets and achieved 81% and 82% classification
accuracy at the feature level and decision level, respectively (Li et
al., 2007).

Pathogenic contamination of fruit is a dangerous threat to
human health and there are currently no instruments to detect
these contaminations on the surface of fruits on site. The electronic
nose has also been used for fruit pathogen detection. Powell et al.
(2002) conducted preliminary research of detecting E.coli on the
surface of ‘red delicious apple’. The e-nose was exposed to the air
samples of contaminated and non-contaminated apples and differ-
ent sensor responses were assessed. Their results showed that some
sensors had strong responses to the air samples at two dilution
rates. They suggested that further research should be conducted
to clearly define separation between the dilution rates in order
to identify the presence of the E. coli and its concentration on
apples.

10.8. Future perspectives

The electronic nose has shown great promise in specialty
crop quality and safety measurement. However, it is still widely
regarded as in its early development stage. As the advancement of
the instrument hardware and software, the electronic nose tech-
nology is expected to have a better selectivity, sensitivity and
repeatability as envisioned below.

(1) The calibration method needs to be designed for the electronic
nose in order to counter the sensor drift effect and generate
repeatable results. This goal can be achieved by developing
mathematical algorithms for drift counteraction and automatic
calibration.

(2) New gas sensor technology development is expected to take
place in the next decade, such as fiber-optic based sensors, car-
bon nano tube based gas sensors, and insect-based gas sensors
(Rains et al., 2006). The ideal gas sensor is expected to have a
higher sensitivity and better stability.

(3) The future electronic nose should have a broader sensor array
like our human olfaction receptors which enables a stronger
odor discrimination power. However, sometimes this broad
selectivity is not needed in certain applications, and the sensor
selection is needed to reduce the data dimensionality.

There is still a long way to go before the electronic nose can be
fully automated in the specialty crops industry. In the near future, it
is foreseeable that more on-line gas-sensors will be implemented in
the industry. The electronic nose will be an important component
in a multi-sensor system to characterise the quality of fruits and
vegetables.

11. Conclusions

In this study, many different sensing technologies for specialty
crop production utilizing precision agriculture have been reviewed.
Based on the observations and recommendations from these stud-
ies, the following needs and future directions have been identified.

Commercial yield monitors are currently available for major
crops such as grain and cotton, but there are no commercial yield
monitors for most specialty crops. While accurate estimates of yield
are not always possible during the growing season, yield patterns
and within-field management zones identified from airborne mul-

tispectral and hyperspectral imagery can be very useful for both
within-season and after-season management. Substantial research
on remote sensing for yield estimation is needed in order to adapt
the existing methods and develop new methods for specialty crops.
Robotic harvesting still poses a great challenge. Improved fruit
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etection algorithms are needed for both yield estimation and coor-
ination of robotic arms for harvesting.

Computer vision is being extensively used as the primary sen-
or for different tasks in precision agriculture. Although sensing
echnology has advanced a lot, still the completed tasks are sim-
le. This is due to the complex and unstructured nature of the
gricultural environment. Recent research has shown that the use
f task-specific wavelengths in the visible and beyond the visible
pectrum range increases the number of successfully accomplished
asks. Nevertheless, color machine vision is the most common form
f machine vision that is used today because it is driven by com-
ercial forces in other fields than agriculture, such as consumer

hotography and video.
More research is needed in the field of processing methods in

yperspectral imaging. Furthermore, recent research shows that
here is a great potential for fusion of several image sources. In order
or such systems to become more accessible and available, more
tudy is needed in the field of automatic image co-registration,
evelopment of models that take into account different proper-
ies of the inspected objects and makes clever interpretation of the
usion between the images.

In the field of water status mapping, although thermal IR imag-
ng becomes increasingly available, there is a great need towards
he development of acquisition and processing techniques that
xploit the advantage of the high accuracy of thermography on one
and, and can compensate for the relatively low spatial resolution
f the cameras on the other hand.

Wireless sensor networks have been developed, however much
mprovement is still needed in various aspects of the technology
uch as communication range and availability of radio frequencies.
ensor networks are basically depending on individual sensors,
owever only a limited number of sensors are currently available

or specialty crop production. Technological advances and syner-
istic effect in both sensors and wireless communication will be
eeded to enhance the performance of sensor networks.

There have been limited sensing techniques for variable rate
hemical application to specialty crops. There is a need for develop-
ng an easy-to-use and low cost commercial unit so that the growers
ould adopt them without too many difficulties.

Sensing systems for soil properties and nutrients have been
eveloped and some of them have been implemented for real-
ime variable rate nutrient applications. However, due to the large
ariations in soil properties, many studies suggested site-specific
alibrations of soil sensors. It remains as a challenge the automatic
apping of soil properties over large geographic areas without

ntensive calibrations. It would be better if there was a new tech-
ique that could accommodate the spatial variabilities of soil
roperties for real-time applications. Developing global soil spec-
ral libraries could be an example.

The underlying mechanisms for noncontact detection of foliar
iseases in crops were discussed including sensing techniques and
ain biological phenomena caused by a disease infestation. Most

iseases can be detected more easily when they are fully developed.
ombinations of spectral changes at different infection stages are
ecommended for more efficient foliar disease detection.

Many crop diseases have been identified as good candidates for
emote sensing, but practical procedures for farming operations
re still lacking. Efforts need to be devoted to the development of
perational methodologies for detecting and mapping these can-
idate diseases. Meanwhile, more research is needed to evaluate
ore advanced imaging systems, image processing techniques and
dvanced classification algorithms combined with sensor fusion
echniques for distinguishing the diseases that are difficult to detect
r occur simultaneously with other stresses.

RFID technology has been studied for tracking agrochemicals
nd irrigation sensor node information. Due to high cost, weak
ics in Agriculture 74 (2010) 2–33 27

signal, and lack of standard, its applications have been limited, how-
ever are expected to be expanded in the near future. The electronic
nose has shown potential in specialty crop application, however
needs further development for a better selectivity, sensitivity and
repeatability.

Although many of the technologies of precision agriculture are
relatively mature (i.e., GPS, GIS, and satellite or airborne remote
sensing), there remains ample room for improvement. One of the
most important is the development of local or proximal sensors that
can be used on farm equipment to determine crop stage, soil condi-
tions and chemistry, weed concentrations, presence of insects, and
other risk factors important for crop growth.

Another problem is how to determine optimal sampling strate-
gies. Some precision agriculture technologies function by adjusting
farming practices (i.e., nutrient application rates) to match vari-
ability in soil nutrient levels or other factors. The knowledge of the
extent of variability is essential at all spatial levels.

The development of standards for hardware, software, and data
interpretation can influence the development and the adoption of
precision agriculture. From the perspective of the user, standardiza-
tion would facilitate easier data interchange, particularly moving
spatial data from one proprietary software package to another
and to regional databases. Standards affecting data and hardware
interchange affect the integration and ease of using these new tech-
nologies. Precision agriculture is technically possible today, but
requires a high degree of technical know-how and persistence from
the end-user.

Overall, more reliable, accurate, rugged and less expensive sens-
ing systems in different aspects of crop production will be needed
for better and efficient site-specific management of specialty crops.
Even though crop and field conditions are highly variable thus com-
plicating certain sensing tasks, the future is promising as there
are many researchers who continue to have interests in sensing
systems and concentrate their efforts on technological advances.
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